
30 CHAPTER 3. PROBLEM DEFINITION AND METHODS

gives cleaner code than using traditional for-loops. For instance, calculating a time step

in a CTRNN (see section 2.4 on page 14) for all neurons, and even supporting unique

time constants for each neuron can be expressed as 4 lines of Python code:

inputs = numpy.matrixmultiply(output, weight)

change = timestep/timeconst * (-potential + inputs + bias)

potential += change

output = map(transfer, potential)

In the code above, the variables output, potential, bias, inputs and change are

all n-sized vectors, while weight is an n× n sized matrix. The code is easily compared

to a vector version of equation 2.3 on page 16:

!y(t + ∆t) = !y(t) +
∆t

!τ

(
− !y(t) + !u(t)×W + !θ

)
(3.10)

!u(t) = σ
(
!y(t)

)
(3.11)

In addition to making code clearer, the matrix operations of NumPy are implemented

using static compiled languages as C and FORTRAN and exploit CPU vector features

such as the Altivec engine (Diefendorff et al., 2000), which in informal tests on the basal

ganglia model gave a considerable speed-up compared to pure Python code, in some

cases by a factor 30.

In this work, experimenting with network shapes and layout was essential, and so

keeping a high-level view of the calculations seemed like a reasonable approach, justifying

the choice of using NumPy.

3.5.2 Implementing the model of Berns and Sejnowski

In the attempt of reproducing the results of Berns and Sejnowski (1998), a model directly

mirroring the equations as described in section 3.4.2 on page 21 was implemented in

Python. Each equation was implemented as a function. For instance, equation 3.6 on

page 25 was implemented as:

def calc_GP(self, i):

sum = 0.0

for j in range(self.inputs*2):

sum += self.w[i,j]*self.STN[j]

noise = random.uniform(-0.25, 0.25)

result = sum - self.effect * self.STR[i] + noise

return self.sigmoid(result)


