
Sequence learning in a 
model of the basal ganglia

Thesis submitted for MSc in computer science

NTNU, Trondheim 2006-09-08

Stian Soiland

http://soiland.no/master



This presentation
Theory
  Control theory & Actor-Critic
  Basal Ganglia and pathways
  CTRNN
Previous work by Berns & Sejnowski
What was done?
Results
  Globus pallidus, Weight learning
  Error function
Experiments & Code
  Noise, Integrator update rule
  CTRNN library
Discussion
  Equation or code?



Actor-critic architecture

System

Feedback

Reference signal
Disturbances

Output

Control
signalsController_

+
error

Environment
(Controlled 

System)

Context

Disturbances

Output

Actions
(Control
signals)

Actor
(Controller)

Critic

Feedback

Reinforcement
signal

Classic control system



Basal ganglia
Caudate

Globus pallidus
external internal

Substantia nigra 
pars reticulata

Putamen

Wikipedia 2006

Adopted from Purves et al. 2003



Basal ganglia pathways
excitatory
inhibitory
dopaminergic
direct pathway
indirect pathway

Globus 
pallidus 
externalSubthalamic 

nucleus

Subtantia 
nigra pars 
compacta

Subtantia 
nigra pars 
reticulata

Cerebral 
cortex

Frontal 
cortex

Striatum

Thalamus

Globus 
pallidus 
internal



Inhibitory connections
excitatory
inhibitory

firing
at restcortex inputs

sensory and
other inputs

Frontal 
cortex

Striatum ThalamusGlobus 
pallidus

STR excited GP inhibited Thalamus
disinhibited

Motor cortex
excited

STR at rest GP tonically
active

Thalamus
inhibited

Motor cortex
not excited

Purves et al. 2003



Basal ganglia in action

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted

Reward occurs

No prediction

Reward occurs

Reward predicted

No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error 

in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.

SCIENCE ! VOL. 275 ! 14 MARCH 1997 ! http://www.sciencemag.org1594

Scultz et al. 1997



Continious time recurrent neural 
network (CTRNN)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20

vo
lta

ge

time

potential
input

Ii(t)

y2(t)

τ=1.0

y1(t) 

τ=4 w1,2

w2,1

θ1

θ2



Berns & Sejnowski's model

error

signal

indirect
pathway

striatum

globus pallidus

error

substantia
nigra

direct
pathway

subthalamic
nucleus

input

output

fast

slow

input

output

fast

slow

input

output

fast

slow

excitatory

inhibitory
weight-

modulating
fixed link

dynamic link

Thalamus

Cortex



What have I done?
Early attempts: C++ implementations of CTRNN & B&S

Direct reproduction of Berns & Sejnowski, equation to code

Experiments and tweaks on the direct reproduction

Implementation of CTRNN library

Reproducing B&S using CTRNN (failed)

Reproducing Prescott (2006) using CTRNN (worked)



Reproducing response of 
globus pallidus

GP 5                     
4                     
3                     
2                     
1                     

GP 5                     
4                     
3                     
2                     
1                     

1 20

200180

evidenced by the error at time step 12. The ambiguity
associated with unit 2 is resolved by the differential
activations between the short and long STN units. More
complex sequences, typically of length greater than 10,
exceeded the model’s ability to reliably reproduce them.
More complex ambiguities also resulted in incorrect
reproductions.

The parameter sensitivity revealed that the model is
robust, but beyond certain limits various degradations
occurred. The ratio of STR/GP learning rates signi!cantly
affected performance. Decreasing the ratio to 1 resulted
in persistently high error signals because the STR pre-
diction was slow to learn, which in turn resulted in STN
weights that continued to increase longer. With persist-
ently increasing weights, the model lost the ability to
disambiguate the context of certain activity patterns,
yielding the sequence 1, 2, 5, 1, 2, 5, . . . . With a learning
ratio of 4, the same sequence was produced, but this was
due to the rapid cessation of learning as the striatal
weights rapidly adjusted and the error went to zero

before many of the STN to GP weights had achieved
their correct values. Diminishing the degree of inhibitory
override, by decreasing a to 1, resulted in maximal acti-
vation of all the GP units during training because the
striatum had insuf!cient inhibition to directly select an
action. The end result, after training, was a uniform
weight matrix with all weights close to 1. With this
weight matrix, the sequence could not be produced at
all. Changing the gain (g) and bias (b) parameters, with
gains ranging from 2 to 8 and biases ranging from 0.1,
to 0.2, did not signi!cantly affect the production of
sequences; however, certain combinations of gain and
bias yielded GP activities that were subtly different.

The aforementioned sequence demonstrated how the
model learned a sequence requiring the disambiguation
of context. We also tested the model’s ability to shift
between a random sequence and a repeating 10-item
sequence. This was done, in part, to test the model on a
well-studied behavioral task of procedural learning (Will-
ingham, Nissen, & Bullemer, 1989). The model was pre-

Figure�4. Unit activities during learning the sequence 1, 2, 3, 4, 2, 5. With layers of !ve units each, activities are shown from 0 (black) to 1
(white) for striatum (STR), globus pallidus (GP), and the two subthalamic nucleus layers with short time constant (STN Short) and long time
constant (STN Long). Panel A shows the activity patterns during the initial 20 time steps of training, and Panel B shows the activity patterns af-
ter 200 time steps. Using the parameters given in Table 2, the striatum trained the globus pallidus to produce a sequence of actions. Initially,
the GP activities were low and disorganized because of minimal excitation from the STN. Subsequently, the weights, and hence the GP activi-
ties, increased except for those corresponding to the action that was actively inhibited by the striatum.

Berns and Sejnowski   113

evidenced by the error at time step 12. The ambiguity
associated with unit 2 is resolved by the differential
activations between the short and long STN units. More
complex sequences, typically of length greater than 10,
exceeded the model’s ability to reliably reproduce them.
More complex ambiguities also resulted in incorrect
reproductions.

The parameter sensitivity revealed that the model is
robust, but beyond certain limits various degradations
occurred. The ratio of STR/GP learning rates signi!cantly
affected performance. Decreasing the ratio to 1 resulted
in persistently high error signals because the STR pre-
diction was slow to learn, which in turn resulted in STN
weights that continued to increase longer. With persist-
ently increasing weights, the model lost the ability to
disambiguate the context of certain activity patterns,
yielding the sequence 1, 2, 5, 1, 2, 5, . . . . With a learning
ratio of 4, the same sequence was produced, but this was
due to the rapid cessation of learning as the striatal
weights rapidly adjusted and the error went to zero

before many of the STN to GP weights had achieved
their correct values. Diminishing the degree of inhibitory
override, by decreasing a to 1, resulted in maximal acti-
vation of all the GP units during training because the
striatum had insuf!cient inhibition to directly select an
action. The end result, after training, was a uniform
weight matrix with all weights close to 1. With this
weight matrix, the sequence could not be produced at
all. Changing the gain (g) and bias (b) parameters, with
gains ranging from 2 to 8 and biases ranging from 0.1,
to 0.2, did not signi!cantly affect the production of
sequences; however, certain combinations of gain and
bias yielded GP activities that were subtly different.

The aforementioned sequence demonstrated how the
model learned a sequence requiring the disambiguation
of context. We also tested the model’s ability to shift
between a random sequence and a repeating 10-item
sequence. This was done, in part, to test the model on a
well-studied behavioral task of procedural learning (Will-
ingham, Nissen, & Bullemer, 1989). The model was pre-

Figure�4. Unit activities during learning the sequence 1, 2, 3, 4, 2, 5. With layers of !ve units each, activities are shown from 0 (black) to 1
(white) for striatum (STR), globus pallidus (GP), and the two subthalamic nucleus layers with short time constant (STN Short) and long time
constant (STN Long). Panel A shows the activity patterns during the initial 20 time steps of training, and Panel B shows the activity patterns af-
ter 200 time steps. Using the parameters given in Table 2, the striatum trained the globus pallidus to produce a sequence of actions. Initially,
the GP activities were low and disorganized because of minimal excitation from the STN. Subsequently, the weights, and hence the GP activi-
ties, increased except for those corresponding to the action that was actively inhibited by the striatum.

Berns and Sejnowski   113

Berns & Sejnowski 1998

Berns & Sejnowski Soiland



Weight learning

sented with 100 trials of randomly ordered stimuli (1, 2,
3, or 4), then 40 repetitions of the sequence 4-2-3-1-3-2-
4-3-2-1, followed by another 100 trials of random stimuli.
In order to compare the GP output to previously re-
ported reaction times, the GP output was linearly trans-
formed by

R(t) = 1  
1
N  å 

i=1

N

Gi(t) (9)

where N was the number of GP units (4 in this case).
R(t) represented a normalized reaction time at time step
t and ranged from 0 to 1. This linearly scaled the match
between the direct and indirect pathways, with the bet-
ter the match, the lower the reaction time. As shown in
Figure 8A, the reaction time initially declined even with
a random sequence and then rapidly reached a stable
level with the introduction of the repeating sequence. It
stabilized at the value 0.25 because the inherent struc-
ture of the sequence allowed for maximal activation of
all GP units except the one being selected. When the
random sequence was reintroduced, the normalized re-
action time became slightly longer.

We also used this paradigm to model the effects of
Parkinson’s disease and the subsequent improvement of
symptoms from pallidotomy (Figure 8, parts B and C).
Parkinson’s disease was modeled by decreasing the
learning rate (r in Equation 6) from 0.025 to 0.005,
re!ecting the overall decline in dopamine that is found

in Parkinson’s disease. This resulted in substantially
slower learning, as evidenced by the lower slope in
Figure 8B, but because the GP activations were generally
lower, the effect of noise was also more prominent. The
effects of the decreased learning rate could largely be
ameliorated by increasing the gain of both the GP and
STN units from 4 to 8. As the gain was increased, units
that were previously marginally active became maxi-
mally active, and thus the "rst term in Equation 6 in-
creased, partially offsetting the decreased learning rate.
This suggests that a potential mechanism for the ef"cacy
of pallidotomy is in the alteration of the gain of pools of
neurons in both the STN and GP. One prediction is that
even though the rate of learning is partially restored, the
effect of noise still remains.

Figure�5. Changes in connection strengths, wij, from learning the se-
quence 1, 2, 3, 4, 2, 5. The "ve weights from the "ve STN units with
short time constants to GP unit 2 are shown. The three weights that
increased to saturation levels were from STN units 2, 3, and 5 (i.e.,
those STN units that were not active prior to GP unit 2 being ac-
tive). Conversely, the weights from STN units 1 and 4 did not in-
crease signi"cantly because when these units were active, GP unit 2
was inhibited by the striatum.

Figure�6. Levels of the “reward” (A) from the GP and the error sig-
nal from the SNc/VTA (B) during learning the sequence 1, 2, 3, 4, 2,
5. The reward was computed as the sum of the GP activities and
was proportional to how well the GP activity vector matched the in-
verse of the striatal activity vector. As the system learned to produce
the sequence, the match, and hence the reward, increased. The error
signal, which was computed by Equation 7, represented the differ-
ence between a weighted sum of the striatal activity and the sum of
the GP activity. The weights on the striatal activities were modi"ed
by the error signal, and thus the difference ultimately converged to
zero. Note that the variance also decreased.

114   Journal of Cognitive Neuroscience Volume 10, Number 1

Berns & Sejnowski 1998

Berns & Sejnowski

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180

we
ig

ht

timestep

STN 1
STN 2
STN 3
STN 4
STN 5

Soiland



Error function

3.4. PREVIOUS WORK 25

without using a leaky integrator:

Gi(s) = σ

(
∑

j

wij(s)Bj(s)− αSi(s) + ηi

)
(3.6)

Here wij is the weight of the connection between STN unit j and GP unit i, which is

a dynamic weight and therefore depending on the current time step s, and the output

of the GP unit Gi is calculated by equation 3.5 on the facing page. Si is the activity of

the corresponding STR unit, i.e. the input to the basal ganglia model. ηi is described

as the level of noise drawn from a uniform distribution. See section 4.2.1 on page 40 for

a discussion on how this can be interpreted.

The SNc is modeled as an error unit, calculating the mismatch between the direct

and indirect pathway. The GP output is compared to the weighted STR input:

e(s) =
∑

i

(
Gi(s)− vi(s)Si(s)

)
(3.7)

where vi(s) is a dynamic weight representing the connection between STR unit i and

the SNc .

This error signal is used for updating the weight of the connection between STN unit

j and GP unit i. Every STN unit has connections to all GP units, and the connection

strength wij is updated using a Hebbian learning rule (Sutton and Barto, 1981):

∆wij(s) = ρw

(
e(s)Gi(s)− Si(s)

)
Bj(s) (3.8)

where ρw = 0.05 is the learning rate, e(s) the error signal as calculated by equation 3.7,

Gi the GP output as equation 3.6, Si the STR input, and Bj the STN output as by

equation 3.5 on the facing page.

A simpler update rule is used for the connections from the STR to the error unit

SNc :

∆vi(s) = ρve(s)Si(s) (3.9)

where the learning rate is ρv = 0.1 in the experiments described by Berns and Sejnowski

(1998).

    def calc_error(self):
        sum = 0.0
        for i in range(self.inputs):
            sum += self.GP[i]
            sum -= self.v[i]* self.STR[i]
        return sum

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100  120  140  160  180  200

er
ro

r

timestep

sented with 100 trials of randomly ordered stimuli (1, 2,
3, or 4), then 40 repetitions of the sequence 4-2-3-1-3-2-
4-3-2-1, followed by another 100 trials of random stimuli.
In order to compare the GP output to previously re-
ported reaction times, the GP output was linearly trans-
formed by

R(t) = 1  
1
N  å 

i=1

N

Gi(t) (9)

where N was the number of GP units (4 in this case).
R(t) represented a normalized reaction time at time step
t and ranged from 0 to 1. This linearly scaled the match
between the direct and indirect pathways, with the bet-
ter the match, the lower the reaction time. As shown in
Figure 8A, the reaction time initially declined even with
a random sequence and then rapidly reached a stable
level with the introduction of the repeating sequence. It
stabilized at the value 0.25 because the inherent struc-
ture of the sequence allowed for maximal activation of
all GP units except the one being selected. When the
random sequence was reintroduced, the normalized re-
action time became slightly longer.

We also used this paradigm to model the effects of
Parkinson’s disease and the subsequent improvement of
symptoms from pallidotomy (Figure 8, parts B and C).
Parkinson’s disease was modeled by decreasing the
learning rate (r in Equation 6) from 0.025 to 0.005,
re!ecting the overall decline in dopamine that is found

in Parkinson’s disease. This resulted in substantially
slower learning, as evidenced by the lower slope in
Figure 8B, but because the GP activations were generally
lower, the effect of noise was also more prominent. The
effects of the decreased learning rate could largely be
ameliorated by increasing the gain of both the GP and
STN units from 4 to 8. As the gain was increased, units
that were previously marginally active became maxi-
mally active, and thus the "rst term in Equation 6 in-
creased, partially offsetting the decreased learning rate.
This suggests that a potential mechanism for the ef"cacy
of pallidotomy is in the alteration of the gain of pools of
neurons in both the STN and GP. One prediction is that
even though the rate of learning is partially restored, the
effect of noise still remains.

Figure�5. Changes in connection strengths, wij, from learning the se-
quence 1, 2, 3, 4, 2, 5. The "ve weights from the "ve STN units with
short time constants to GP unit 2 are shown. The three weights that
increased to saturation levels were from STN units 2, 3, and 5 (i.e.,
those STN units that were not active prior to GP unit 2 being ac-
tive). Conversely, the weights from STN units 1 and 4 did not in-
crease signi"cantly because when these units were active, GP unit 2
was inhibited by the striatum.

Figure�6. Levels of the “reward” (A) from the GP and the error sig-
nal from the SNc/VTA (B) during learning the sequence 1, 2, 3, 4, 2,
5. The reward was computed as the sum of the GP activities and
was proportional to how well the GP activity vector matched the in-
verse of the striatal activity vector. As the system learned to produce
the sequence, the match, and hence the reward, increased. The error
signal, which was computed by Equation 7, represented the differ-
ence between a weighted sum of the striatal activity and the sum of
the GP activity. The weights on the striatal activities were modi"ed
by the error signal, and thus the difference ultimately converged to
zero. Note that the variance also decreased.

114   Journal of Cognitive Neuroscience Volume 10, Number 1

Berns & Sejnowski Soiland

Berns & Sejnowski 1998



 0.85

 0.9

 0.95

 1

 1.05

 0  20  40  60  80  100

G
P 

fir
in

g 
ra

te

Timestep

without noise
w/noise #1
w/noise #2

fixed bias=1

Experiment: Noise



Experiment: Sigmoidal update rule

4.2. REFINEMENTS 45

continuous-time recurrent neural networks (CTRNN) (Beer, 1995; Blynel and Floreano,

2002; Di Paolo, 2003). As pointed out in section 3.4.2 on page 21, Berns and Sejnowski

use the result of the transfer function also to update the internal state of the STN

neurons. This internal state, usually a representation of the neuron membrane potential,

is therefore said to be equal to the output of the neuron, the firing rate.

As shown in the discrete update rule in equation 3.5 on page 24, the sigmoid function

is applied several times, as simplified in:

B(s) = σ (αB(s− 1) + β) (4.1)

B(s + 1) = σ (ασ (αB(s− 1) + β) + β) (4.2)

To investigate the effect of using an iterative sigmoidal update rule, two different rules

were applied in a Octave (Murphy, 1997) simulation, a function u(t) representing the

normal leaky integrator potential, while function v(t) represents the sigmoidal update

rule as in Berns and Sejnowski:

u(t) = u(t− 1) +
1

τ

(
− u(t− 1) + I(t)

)
(4.3)

v(t) = σ

(
v(t− 1) +

1

τ

(
− v(t− 1) + I(t)

))
(4.4)

where τ is the time constant, σ the sigmoid function 3.3 on page 24 with parameters

gain γ = 4 and bias β = 0.1 as in Berns and Sejnowski (1998). The implicit time step

is set to 1 second, and so the time constant is set to τ = 9, as a scaled up version of

the slow STN suggested by Berns and Sejnowski where τ = 90ms and ∆t = 10ms. The

input I(t) is zero except in time step 10 and 17 . . . 22, thus representing one short and

one long signal.

As shown in figure 4.10 on the next page, and discussed in section 2.4 on page 14,

the normal potential u(t) develops in a negative exponential way towards the current

input. Thus, the longer the input, the closer the potential gets to the input voltage.

The sigmoidal transfer function applied as σ(u(t)) normalises the neural output to

be in the range (0, 1), but the bias β = 0.1 shifts the neutral output to 0.4 instead of 0.5.

Other than that, the sigmoid output almost exactly traces the membrane potential. In

fact, if u(t) is shifted with +0.4, the two graphs will overlap except for the top around

t = 23.

However, for the case of the incrementally applied sigmoidal rule v(t), as described

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30

vo
lta

ge

time

input
u(t)

sigmoid(u(t))
v(t)

24 CHAPTER 3. PROBLEM DEFINITION AND METHODS

where Bi(t) is the activity (firing frequency) of the STN , Gi(t) the activity of the

matching GP unit (with an inhibitory synapse), τ is the time constant and δ the synaptic

delay between the GP and STN units. α is a scaling factor for the magnitude of the

inhibitory connection from GP .

Berns and Sejnowski discretise equation 3.1 on the previous page using the forward

Euler method:

Bi(t) = σ

(
Bi(t−∆t) +

∆t

τ

(
−Bi(t−∆t)− αGi(t− δ)

))
(3.2)

as a modified version of equation 2.3 on page 16, including the sigmoidal transfer function

σ, which is an extended version of equation 2.2 on page 14 introducing a gain γ and a

bias β:

σ(x) =
1

1 + e−γ(x−β)
(3.3)

Berns and Sejnowski (1998) introduce a term λ representing the time constant scaled

by the size of the time step:

λ =
τ

τ + ∆t
(3.4)

Substituting equation 3.4 into equation 3.2 yields the form used in the update rule of

Berns and Sejnowski (1998):

Bi(s) = σ
(
λBi(s− 1)− (1− λ)αGi(s− n)

)
(3.5)

In this discrete version, s represents the discrete time step1, n = δ
∆t the synaptic

delay as a number of time steps and ∆t is the length of a time step. The transfer

function σ is described by equation 3.3 and normalises the STN output between 0 and

1 to represent the firing frequency.

What is special in this approach is that the transfer function also influences the

internal state (the membrane potential) of the STN . As shown in section 4.2.2 on

page 43 this reduces the effect of the time constants, and sets an implicit bias.

The system output is the firing frequency of the GP units, which is calculated

1Berns and Sejnowski (1998) uses t to represent both the time and the time step. To avoid this
ambiguity, this text will use s for representing the time step in discrete time, while t represents the
actual time in differential equations.

def calc_STN(self, i):
  return self.sigmoid(lambd * self.STN[i] -
         (1-lambd) * self.effect * self.GP[i/2])
(..)    
STN[i] = calc_STN(i)

def sigmoid(self, x):
    return 1.0 / (1.0 + 
      math.exp(-self.gain * (x-self.bias)))



CTRNN library for Python
import ctrnn
net = ctrnn.CTRNN(2)
net.bias[0] = 0.4
net.timeconst[1] = 1.4
net.weight[0,1] = 1.5
net.weight[1,0] = -1.0
net.calc_timestep(); print net.output
net.calc_timestep(); print net.output

[ 0.59868766  0.5       ]
[ 0.47502081  0.6550814 ]

y1(t)
τ=1.4

y0(t) 
τ=1.0

1.5

-1.0

0.4



Equations or code?

inputs = numpy.matrixmultiply(output, weight) 
change = timestep/timeconst * 
         (-potential + inputs + bias) 
potential += change 
output = map(transfer, potential)

More readable, but also more verbose

30 CHAPTER 3. PROBLEM DEFINITION AND METHODS

gives cleaner code than using traditional for-loops. For instance, calculating a time step

in a CTRNN (see section 2.4 on page 14) for all neurons, and even supporting unique

time constants for each neuron can be expressed as 4 lines of Python code:

inputs = numpy.matrixmultiply(output, weight)

change = timestep/timeconst * (-potential + inputs + bias)

potential += change

output = map(transfer, potential)

In the code above, the variables output, potential, bias, inputs and change are

all n-sized vectors, while weight is an n× n sized matrix. The code is easily compared

to a vector version of equation 2.3 on page 16:

!y(t + ∆t) = !y(t) +
∆t

!τ

(
− !y(t) + !u(t)×W + !θ

)
(3.10)

!u(t) = σ
(
!y(t)

)
(3.11)

In addition to making code clearer, the matrix operations of NumPy are implemented

using static compiled languages as C and FORTRAN and exploit CPU vector features

such as the Altivec engine (Diefendorff et al., 2000), which in informal tests on the basal

ganglia model gave a considerable speed-up compared to pure Python code, in some

cases by a factor 30.

In this work, experimenting with network shapes and layout was essential, and so

keeping a high-level view of the calculations seemed like a reasonable approach, justifying

the choice of using NumPy.

3.5.2 Implementing the model of Berns and Sejnowski

In the attempt of reproducing the results of Berns and Sejnowski (1998), a model directly

mirroring the equations as described in section 3.4.2 on page 21 was implemented in

Python. Each equation was implemented as a function. For instance, equation 3.6 on

page 25 was implemented as:

def calc_GP(self, i):

sum = 0.0

for j in range(self.inputs*2):

sum += self.w[i,j]*self.STN[j]

noise = random.uniform(-0.25, 0.25)

result = sum - self.effect * self.STR[i] + noise

return self.sigmoid(result)

Concise, but can be difficult to understand

Mathematics can be general, but code is reproducible.
Maybe the best is a combination?



Questions?

All code, thesis and presentation at:

http://soiland.no/master


