
Abstract

This thesis presents a computational model of the basal ganglia that is able to learn

sequences and perform action selection. The basal ganglia is a set of structures in

the human brain involved in everything from action selection to reinforcement learning,

inspiring research in psychology, neuroscience and computer science.

Two temporal difference models of the basal ganglia based on previous work have

been reimplemented. Several experiments and analyses help understand and describe

the original works. This uncovered flaws and problems that is addressed.

i

ii ABSTRACT

Preface

I started at NTNU in Trondheim in August 1998. I was initially studying physics, as I

wanted to discover more about how our amazing world works. However, physics is full

of differential equations and mathematics I couldn’t handle.

I decided to change my studies to computer science, as I had great interest in com-

puters, and particularly programming. After some years, when my MSc studies finally

started, I was lucky to get appointed Keith Downing as my supervisor. After consider-

ing other projects, he suggested for me to work on a model of the basal ganglia. I had

never heard about this brain structure before, and he quickly draw different boxes and

pathways on the whiteboard with great enthusiasm.

This got me hooked. I started going to neuroscience classes and bought a neuroscience

text book. I had forgot that one of the most amazing structures of the world is right

there in our heads. It turned out in the end that I was going to discover something

about how our world works. Unfortunately, the differential equations also came back,

but I was not afraid of them anymore now. I knew how to attack them. With code.

I had never managed to do this work had it not been for the great support I’ve got

from my friends, colleagues, family and girlfriend. I would like to thank specially my su-

pervisor Keith, for his inspiring talks and emails; Diego, for his advice on “start writing

as early as possible” (which I didn’t); André, for his friendship and advises; Sverre, for al-

ways asking when I’ll deliver; Magnus, for useful comments and help; Pernille, for helping

me face trouble; Siv, for her motivation; Femke, for being helpful and understanding; my

mum, for keeping me positive; Andrea, for his pasta and scientific discussions; H̊avard,

for his viewpoints and corrections; Magni, for our joint frustrations; John and University

of Manchester, for letting me visit and have lots of fun; and least but most importantly,

Gaby, for helping me stay focused (www) and for being amazingly kind and lovely

Stian Søiland, Manchester, UK, 2006-06-07

iii

iv PREFACE

Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Outline of this work . 2

2 Theory 3

2.1 Control theory . 3

2.1.1 Actor-Critic architecture . 4

2.2 Reinforcement learning . 5

2.2.1 Classical conditioning . 6

2.2.2 Temporal difference (TD) learning 6

2.3 Basal ganglia . 7

2.3.1 Neurological description . 7

2.3.2 Psychological research . 12

2.4 Continuous time recurrent neural networks 14

3 Problem definition and methods 17

3.1 Modeling the basal ganglia . 17

3.2 Simulating basal ganglia in a robotic simulation 18

3.3 Sequence learning . 19

3.4 Previous work . 20

3.4.1 Temporal difference models . 20

3.4.2 Berns and Sejnowski’s model . 21

3.4.3 Prescott et al. 26

v

vi CONTENTS

3.5 Experiment details . 27

3.5.1 Implementation frameworks . 28

3.5.2 Implementing the model of Berns and Sejnowski 30

3.5.3 Implementing the model of Prescott et al. 31

4 Experimental Results 33

4.1 Reproducing the model of Berns and Sejnowski 33

4.1.1 Globus pallidus activity . 33

4.1.2 Weight learning . 35

4.1.3 Error values . 37

4.1.4 Reward . 39

4.1.5 Playback . 39

4.2 Refinements . 40

4.2.1 Noise . 40

4.2.2 Leaky integrators with sigmoidal updates 43

4.3 Implementing a CTRNN . 48

4.4 Reproducing the model of Prescott et al. 49

4.4.1 Transfer function . 49

4.4.2 Performing action selection . 50

5 Conclusion 53

5.1 Summary . 53

5.2 Discussion . 53

5.2.1 Basal ganglia as a TD-learning actor-critic 53

5.2.2 Reproducing Berns and Sejnowski 54

5.2.3 Issues with reproducing experiments 56

5.3 Future work . 57

A Source code 59

A.1 Berns and Sejnowski in Python . 60

A.2 CTRNN library for Python . 68

A.2.1 Tests . 78

A.3 Berns and Sejnowski using CTRNN . 89

A.4 Prescott (2006) using CTRNN . 95

Bibliography 103

List of Figures

2.1 Negative feedback control system. 4

2.2 Actor-Critic architecture as a controller. 5

2.3 Medium spiny neurons in the striatum. 8

2.4 Coronal slices of the human brain highlighting the nuclei of the basal

ganglia. 9

2.5 Pathways in the basal ganglia. 10

2.6 Firing rates in the direct pathway for a striatum at rest and being excited. 11

2.7 Monkey dopamine neuron firing when learning to predict a reward. . . . 13

2.8 Simple continuous-time recurrent neural network (CTRNN) network. . . 15

2.9 Potential development of a simplified continuous-time recurrent neural

network (CTRNN) neuron. 15

3.1 Sequence learning in the basal ganglia. 19

3.2 Temporal difference models of basal ganglia. 20

3.3 Berns and Sejnowski (1998) computational model of the basal ganglia. . 22

3.4 Sequence learning in the Berns and Sejnowski’s model. 23

3.5 Humphries and Gurney basal ganglia model. 27

4.1 Globus pallidus activities during learning in Berns and Sejnowski (1998). 34

4.2 Globus pallidus activities during learning in reimplementation. 34

4.3 Changes in connection strengths when learning sequence (original). . . . 36

4.4 Changes in connection strengths when learning sequence (reimplemented). 36

4.5 Firing of subthalamic nucleus unit 2. 38

4.6 Error value distribution (original). 38

4.7 Error value distribution (reimplemented). 39

4.8 Error values with three different instances of random noise. 42

4.9 Firing rate of globus pallidus unit with and without constant noise. . . . 44

vii

viii LIST OF FIGURES

4.10 Effect of sigmoidal update rule on continuous-time recurrent neural net-

work (CTRNN) neurons. 46

Chapter 1

Introduction

1.1 Background

The composite brain structure basal ganglia inspires researchers in several sciences. First

of all, neurologists are interested in how the diverse set of nuclei are involved in motor

control, in particular how movement disorder diseases such as Parkinson’s (Parkinson,

1817) and Huntington’s (Huntington, 1872) are caused by degenerations within the basal

ganglia.

Psychologists are researching how the basal ganglia is involved in planning and learn-

ing, including action selection and sequence learning, as covered in this work. Computer

scientists find inspiration in the basal ganglia for reinforcement learning algorithms and

designing artificial neural networks.

During the last 15 years, several approaches for modeling the basal ganglia on system

level has been presented. As there is a diversity of functionality contributed to the

basal ganglia, researchers have built models dealing with topics as classical conditioning,

temporal difference learning, sequence learning and action selection.

1.2 Motivation

The original motivation for this work was to construct a robot simulation applying a

computerized model of the basal ganglia, enabling the robot to learn sequenced move-

ments, for instance moving in a maze towards a reward.

In order to do such a task, the basal ganglia model will have to perform sequence

learning. This thesis investigates a model by Berns and Sejnowski (1998), which is

reported to be able to learn and reproduce sequences. Several flaws in the original work

1

2 CHAPTER 1. INTRODUCTION

were identified and analyzed.

1.3 Outline of this work

Chapter 2 reviews the theories relevant for modeling basal ganglia, including actor-

critic architecture and continuous time recurrent neural networks.

Chapter 3 describes the problem of doing sequence learning and modeling the basal

ganglia. Methods applied for the implementations are detailed.

Chapter 4 presents the results from experimenting with the basal ganglia model.

Chapter 5 concludes the work and suggest future directions.

Chapter 2

Theory

This chapter introduces the theory relevant for this work. First, control theory is pre-

sented with an emphasis on actor-critic architectures, as the basal ganglia is often com-

pared to actor-critics. Next, the section on reinforcement learning gives an overview of

classical conditioning and temporal difference learning.

Following, the basal ganglia is described from a neurological and psychological point

of view. Finally, this chapter gives a short theoretical introduction to continuous-time

recurrent neural networks (CTRNN), a type of artificial neural networks often used in

basal ganglia modeling.

2.1 Control theory

In classical control theory a system represents some unknown dynamics which is to be

controlled. The system can represent real world things like a car, industrial plant or the

environment of a room. A generic linear negative feedback control system is pictured in

figure 2.1 on the following page.

The goal of the controller is to match the output of the system as closely as possible

to the reference signal. To achieve this, a feedback loop is formed so that the controller is

fed with the difference between the desired signal (the set-point) and the actual output.

This difference can be called the error. In order to change the system output in the

desired direction, the controller issues control signals to the system. The goal of the

controller can therefore be said to minimise the error of the feedback loop.

A simple example of a control system is the temperature control of an office building.

In this situation, the system is the environment of the building, where the output can be

described by a temperature sensor, giving the room temperature. A thermostat setting

3

4 CHAPTER 2. THEORY

System

Feedback

Reference signal Disturbances

Output

Control
signalsController

_
+

error

Figure 2.1: Negative feedback control system. The error is the difference between
the reference signal and the output of the system. The difference is inputted to the
controller which will issue control signals to modify the system as to minimise the
error. Disturbances skew the system from the desired output. The desired output
is fed to the controller as the reference signal.

provides the desirable state, thus forming the reference signal. The controller issues

control signals to turn on or off heaters in order to increase or decrease temperature.

However, there are also disturbances to the system, for instance an employee might leave

a window open and push the room temperature out of the desired state.

2.1.1 Actor-Critic architecture

A feedback control system is considered a closed-loop system because the output of the

controller will modify the environment, and thus also the inputs to the controller. On

the other hand, an open-loop system does not have a feedback loop, and the output of

such a system does not (directly or indirectly) influence its inputs.

Actor-Critic models are strongly related to control theory. Figure 2.2 on the next

page pictures the Actor-Critic architecture from the viewpoint of control theory. The

actor selects actions to be performed on the environment to match the feedback signals

with the desired environment output, as determined by the context. The critic judges

the actor’s decisions, giving a positive or negative reinforcement signal depending on if

the actor modified the environment in the right direction or not.

When comparing the actor-critic architecture to control systems, the actor can be

considered the controller, while the environment is comparable to the system. The critic

plays the role of a temporal difference (TD) error that gives an indication if the actor

decision was better or worse than predicted (Barto, 1995). Note that the actor-critic

2.2. REINFORCEMENT LEARNING 5

Environment
(Controlled

System)

Context

Disturbances

Output

Actions
(Control
signals)

Actor
(Controller)

Critic

Feedback

Reinforcement
signal

Figure 2.2: Actor-Critic architecture as a controller. The actor behaves as the
controller in figure 2.1 on the facing page, acting on the environment to match
the feedback with the contextual goal. The critic judges the actor by positive or
negative reinforcement signals depending on the success of achieving the control
objectives as provided by the context. Adapted from Barto (1995, fig. 1).

architecture set-point is a more generalised context, not necessarily directly comparable

to the reference signal set-point of classical control systems.

The temporal difference (TD) error from the critic modifies the actor’s policy to

strengthen or weaken the selection of the preceding action. For instance, if the actor is

implemented as an artificial neural network, a positive reinforcement signal combined

with differential Hebbian learning (Sutton and Barto, 1981) would strengthen weights

on connections that were active in selecting the action.

2.2 Reinforcement learning

Reinforcement learning (RL) is a broad field covering research in behavioral psychology,

machine learning, neuroscience and statistics. Reinforcement learning can be described

as the problem faced by an agent that learns behavior through trial-and-error interactions

with a dynamic environment (Kaelbling et al., 1996).

Central to reinforcement learning is the concept of reward. As the agent visits differ-

ent states, a reward is assigned, possibly negative representing punishments. The agent

must perform actions to move from one state to another. The goal of an agent perform-

6 CHAPTER 2. THEORY

ing reinforcement learning is to maximise the cumulative reward (Wörgötter and Porr,

2005).

As reinforcement learning has its roots in psychology, this section will first describe

classical conditioning before detailing a particular way to perform reinforcement learning

called temporal difference (TD) learning. It is worth to note that several other RL

heuristics exists, for reviews see Kaelbling et al. (1996) and Sutton and Barto (1998).

2.2.1 Classical conditioning

Classical conditioning is best illustrated by the example of Pavlov (1927), where his dogs

started salivating when presented the ringing of a bell, predicting that food was to be

served. The dogs learned that the bell stimulus always conditioned the reward. Thus the

dogs were able to learn the temporal correlation of the bell predicting the reward. The

conditioning signal, the bell, is called the conditioned stimulus (CS), while the reward

signal is called the unconditioned stimulus (US). After learning, the CS will act as a

substitution signal for the US .

As pointed out by Wörgötter and Porr (2005), this represents an open-loop condition.

An open-loop condition is where the prediction does not influence the environment. The

dog’s salivation does not change the fact that the food is followed by the bell. The

opposite is called closed-loop conditions, where the system output also influences the

inputs. For instance with a robot, deciding to turn left will change the sensor readings,

or for conditioning experiments, a monkey pushing a button at the right time will give

him the food reward.

2.2.2 Temporal difference (TD) learning

In delayed reinforcement learning, the system observes a temporal sequence of input

states, followed by the reinforcement signal, the reward. The task of such a system is

to predict the expected reward given the input states (Tesauro, 1992). In a closed-loop

environment, the system might also issue control signals to influence the sequence of

states, where the goal is to maximise the reinforcement.

One of the challenges of delayed reinforcement learning is the temporal credit assign-

ment problem. The reward signal can be received after performing a long sequence of

action selections. The latest action should not be the only rewarded state, because the

agent also had to choose the correct previous actions to end up in that state.

The temporal credit problem is therefore how to distribute reward or blame to the

2.3. BASAL GANGLIA 7

different states leading to the rewarding state.

Instead of assigning credit based on the difference between predicted and actual

outcome, in temporal difference (TD) learning (Sutton, 1988) the approach is to assign

credit by the difference between temporally successive reward predictions. As such, the

TD model uses a reward prediction, and one of the features of this is that there is no

longer a need for a separate reward signal.

2.3 Basal ganglia

This chapter starts with a description of the basal ganglia from a neurological point of

view. The focus of this work is on the functional aspects of the basal ganglia, so the

text will not go in depth of the anatomical details.

Finally this chapter reviews how psychological research has shown that the basal

gangia is linked to reinforcement learning.

2.3.1 Neurological description

Basal ganglia is a set of connected nuclei in mammal brains considered important for

movement and cognition. In primates, the basal ganglia consist of the striatum (STR),

globus pallidus (GP), substantia nigra (SN) and the subthalamic nucleus (STN). The

striatum consists of the nuclei caudate and putamen, and the globus pallidus is split into

globus pallidus external (GPe) and globus pallidus internal (GPi). The substantia nigra

is also usually split into substantia nigra pars compacta (SNc) and substantia nigra pars

reticulata (SNr).

The basal ganglia is a mirrored structure, as shown in figure 2.4 on page 9, so all

nuclei are doubled for the left and right hemisphere. This text will, as a simplification,

consider basal ganglia as a single set of nuclei. This is normal in literature on modeling

basal ganglia.

Inputs

The separate nuclei caudate and putamen, called the corpus striatum, receive projections

from large areas of the cerebral cortex and is considered the input zone of the basal

ganglia.

The inputs to the caudate and putamen are however not equivalent. While the

caudate primarily receives high level inputs from multimodal association cortices, the

8 CHAPTER 2. THEORY

Caudate

Globus pallidus
external internal

Substantia nigra
pars reticulata

Putamen

Figure 2.3: Medium spiny neurons in the striatum. Putamen and caudate, in this
text referred to as the striatum, projects medium spiny neurons to globus pallidus
and substantia nigra pars reticulata. The putamen is anatomically located with the
split globus pallidus, but separated from the caudate and substantia nigra. Adopted
from Purves et al. (2003, fig. 17.3)

2.3. BASAL GANGLIA 9

Figure 2.4: Coronal slices of the human brain highlighting the nuclei of the basal
ganglia. The left slice features the striatum (STR), globus pallidus external (GPe)
and globus pallidus internal (GPi). The right slice views the subthalamic nucleus
(STN) and the substantia nigra (SN). Reproduced from Wikipedia 1.

inputs of the putamen are more lower level, including primary and secondary sensory

cortical areas. In this text, focusing on the connectionism and learning aspect of the

basal ganglia, the caudate and putamen are treated like one homogenous set of inputs

and called striatum.

The striatum is mainly composed of medium spiny neurons characterized by their

large dendritic trees which allows them to integrate inputs from a variety of cortical,

thalamic and brainstem structures (Purves et al., 2003). Figure 2.3 on the preceding

page shows how the spiny neurons of the striatum projects to the globus pallidus and

substantia nigra.

Outputs

The primary output zones of the basal ganglia are the globus pallidus internal and

substantia nigra pars reticulata. The internal globus pallidus projects to the VA/VL

complex of the thalamus, where the outputs are relayed to the motor cortex. This

completes the motor loop, beginning with the basal ganglia inputs from almost all areas

from the cerebral cortex, and terminating on the motor and premotor areas of the frontal

lobe and in the superior colliculus.

The substantia nigra pars reticulata on the other hand does not primary project

10 CHAPTER 2. THEORY

Globus pallidus
external

Subthalamic
nucleus

excitatory

inhibitory

dopaminergic

Subtantia nigra
pars compacta

Subtantia nigra
pars reticulata

Cerebral cortex Frontal cortex

Striatum

Thalamus

Globus pallidus
internal

direct pathway

indirect pathway

Figure 2.5: Pathways in the basal ganglia. The cortex projects to striatum (STR),
which projects inhibitory through globus pallidus internal (GPi) and thalamus to
complete the motor loop in the frontal cortex. The indirect pathway diverts from
the striatum through globus pallidus external (GPe), subthalamic nucleus (STN)
before modulating the direct pathway signals in the GPi .

through the thalamus, but directly to eye movement related areas in the superior col-

liculus.

In this text, the two nuclei are mostly considered equal and just mentioned as GPi.

This assumption is based on their similar output functions, and the fact that develop-

mental studies have shown that SNr was once a part of the globus pallidus, and that

it is only in the most recent stages of evolutionary development that the nuclei have

become separated (Purves et al., 2003).

Pathways

There can be considered to exist two primary pathways through the basal ganglia con-

necting the input zone to the output zone and providing the internal dynamics (Smith

et al., 1998). The direct pathway, as shown in figure 2.5, is made up of the excitatory

projections from the cortex to the striatum, inhibitory projections from striatum to the

globus pallidus internal, with inhibitory projections further on to the thalamus where

excitatory connections closes the loop back to the cortex.

2.3. BASAL GANGLIA 11

cortex inputs
sensory and
other inputs

excitatory
inhibitory

firing
at rest

Frontal cortex
Striatum Thalamus

Globus pallidus

STR excited GP inhibited Thalamus
disinhibited

Motor cortex
excited

STR at rest GP tonically
active

Thalamus
inhibited

Motor cortex
not excited

Figure 2.6: Firing rates in the direct pathway for a striatum at rest and being
excited. The double inhibition of STR-GP and GP-thalamus enables a net exci-
tation of the motor cortex due to other sensory inputs to the thalamus. Adapted
from Purves et al. (2003, fig. 17.6).

The direct pathway can be said to be modulated by the indirect pathway. The indi-

rect pathway also starts with the cortical projections to the striatum, but the striatum

projects inhibititory through the globus pallidus external and further on through the

subthalamic nucleus , where it excitatory affects the globus pallidus internal, merging

with the direct pathway. In this way, the indirect pathway can be said to be modulating

the signals of the direct pathway.

The GPi-thalamus pathway and the GPe-STN pathway are both inhibitory, but the

globus pallidus is tonically active, which means that without inhibition by the striatum

or the subthalamic nucleus , the globus pallidus neurons will always fire. This means

that the GPi will inhibit the thalamus most of the times, except when stimulated by

the striatum or STN, as shown in figure 2.6.

The net effect of this disinhibitory circuit of the direct pathway is that when the

striatum is at rest, the globus pallidus is tonically active, which will inhibit the thalamus

and thereby block thalamus from relaying sensory inputs to the motor cortex. On the

12 CHAPTER 2. THEORY

other hand, if the striatum is excited, the GP will be inhibited, which will no longer

inhibit the thalamus that will then allow sensory signals to excite the motor cortex.

This view of the direct and indirect pathways has been extended by Gurney et al.

(2001), their computational model of the basal ganglia suggests that the pathways can

be considered as performing selection and control in the act of action selection. Bar-Gad

et al. (2003) updates the classical box-arrow description as of figure 2.5 on page 10 with

a summary of newer experimental data. The direct and indirect pathways are not as

segregated as once thought (Bar-Gad et al., 2003). In addition, most paths are paired

with a back-projection, for instance GPe to striatum. The cortex projects not only to

the striatum, but also to the thalamus and STN .

For simplicity, in this text, only the classical pathways will be considered, as this is

the general usage in basal ganglia modeling literature.

2.3.2 Psychological research

As reviewed in Schultz et al. (1997), experiments on dopamine neurons have revealed that

dopamine in the basal ganglia is closely linked to reward prediction. In experiments with

monkeys, as shown in figure 2.7 on the next page, short dopamine releases are initially

triggered by the primary reward, such as drops of fruit juice released to the monkey’s

mouth. After repeated training of pairing visual and auditory cues (such as flashing a

light) followed by the reward, the monkey is able to predict the reward at the time of

the cue signals, because the dopamine is released at the time of the conditioned stimulus

(CS), and no longer at the reward. However, if the reward fails to be delivered, the

dopamine background signals will be depressed at the point in time where the monkey

predicted it to be delivered.

This learning of the connection between an conditioned stimulus and a unconditioned

stimulus, as initially described by Pavlov (1927), shows that the dopamine responses

can be viewed as an error signal, noting the difference between the predicted and actual

reward (Schultz et al., 1997). Before learning, the reward is not expected, and so the rise

of dopamine can be said to signal a positive error. After learning the reward is received

as expected, and so there is no longer an error signal at the delivery time, unless the

reward is failing, in which a negative error signal (depression of the background dopamine

firing) will occur.

2.3. BASAL GANGLIA 13

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted

Reward occurs

No prediction

Reward occurs

Reward predicted

No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error

in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.

SCIENCE ! VOL. 275 ! 14 MARCH 1997 ! http://www.sciencemag.org1594

Figure 2.7: Monkey dopamine neuron firing when learning to predict a reward.
Before learning (top graph), the conditioned stimulus (CS) is not detected, but the
reward (R) gives a rise in dopamine firing. After learning (middle graph), the CS
gives a sharp rise in dopamine firing, and predicts the reward so that no rise in

firing occurs at reward. If the reward fails to be delivered after the CS (bottom
graph), the prediction will depress the background dopamine firing at the predicted
time of the award. Reproduced from Schultz et al. (1997, fig. 1).

14 CHAPTER 2. THEORY

2.4 Continuous time recurrent neural networks

Continuous-time recurrent neural networks (CTRNN) (Beer, 1995) is an artificial neural

network applying leaky integrators as a countermeasure to the loss of the temporal

dimension in discrete feed-forward networks. A neuron’s activity is made dependant on

both current inputs and previous activity. A time constant will generally specify how

much historical activity should matter compared to new inputs, and such could be said

to specify the temporal perspective of the neuron.

A large time constant means a neuron will average (integrate) inputs over a longer

time, making it ‘slow’. The output of such a neuron will be smoother than the outputs of

a ‘faster’ neuron, because it will take a longer time to fully respond to a changed signal.

A small time constant will place more importance on the history than the current inputs,

and can introduce dampened oscillations because of over-compensation.

A generic CTRNNs can be described by the differential equation 2.1 (adapted from

Beer, 1995):

dyi

dt
=

1

τi

(
−yi +

N∑
j=1

(
wjiσ (yj + θj) + Ii(t)

))
i = 1, 2, . . . , N (2.1)

where y is the current state of each of the N neurons, τ is the time constant, wji is the

weight of the connection from neuron j to i, θ is the bias, and I is the external input.

Figure 2.8 on the next page illustrates a simple CTRNN . σ is the activation function,

usually as described by the sigmoidal function in equation 2.2.

σ(x) =
1

1 + e−x
(2.2)

What makes a CTRNN different from a discrete time recurrent network is that

changes in the network are continuous, so that the output of a neuron at time t is

dependent both on the inputs and on the previous activation level at t − ∆t. This

enables the CTRNN neurons to have some form of short-term memory and to get a

grasp of time. Each neuron can have a different time constant, and thereby a different

temporal view. A time constant equal to the time step ∆t would effectively make the

neuron behave like in a normal recurrent network, with no internal state or historical

trace.

Equation 2.1 can be solved using the forward Euler method. As pointed out by

Blynel and Floreano (2002); Hines and Carnevale (1998), the time step must never be

2.4. CONTINUOUS TIME RECURRENT NEURAL NETWORKS 15

Ii(t)

y2(t)
τ=1.0

y1(t)
τ=4

w1,2

w2,1

θ1

θ2

Figure 2.8: Simple continuous-time recurrent neural network (CTRNN) network.
Inputs Ii feed the network, while neurons y1 and y2 have looping connections of
weights w1,2 and w2,1. The neurons have biases θj and different time constants τj.
The time constants modify the reaction time of the internal potential, and thus the
shape of the output. Neuron y1 has a large time constant τ = 4, a slowly reacting
potential, giving a curved output. The neuron y2 has a fast time constant of τ = 1,
resulting in sharply edged outputs directly following the inputs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

vo
lta

ge

time

potential
input

Figure 2.9: Potential development of a simplified continuous-time recurrent neu-
ral network (CTRNN) neuron. Calculated using the discrete equation 2.3 on the
following page, with τ = 3 and input active for t = 2 . . . 8. The internal state
integrates the input, so that when the input is active, the potential rises, while it
decays in the lack of input. The potential develops negative exponentially towards
the current input.

16 CHAPTER 2. THEORY

more than twice the smallest time constant in the system, or else the discrete integration

will not be numerically stable. The discrete update rule for the CTRNN is:

yi(t + ∆t) = yi(t) +
∆t

τi

(
−yi(t) +

N∑
j=1

(
wjiσ (yj + θj) + Ii(t)

))
i = 1, 2, . . . , N(2.3)

Figure 2.9 on the preceding page shows the internal state of a simple CTRNN

neuron using equation 2.3 with ∆t = 1, τ = 3 and no recurrent connections. The

potential develops in a negative exponential fashion towards the current input signal,

like an RC circuit. The potential development of the CTRNN neuron also resembles

an eligibility trace, as used in temporal difference (TD)-learning, see section 2.2.2 on

page 6.

This kind of artificial neurons has also been called leaky integrators because they

integrate their input over time, but the internal state also decays, or leaks, over time.

Chapter 3

Problem definition and methods

This chapter describes the problem of modeling the basal ganglia in computer simulations

and reviews the categories of existing basal ganglia models. Next, the task of learning

sequences in a basal ganglia context is specified. Previous work on this topic is reviewed,

with a focus on the work by Berns and Sejnowski. Finally, implementation details related

to this work are presented.

3.1 Modeling the basal ganglia

The functioning and internal workings of the basal ganglia are not yet fully understood,

and as such the basal ganglia has been the basis of several computer modeling attempts,

as reviewed in Joel et al. (2002); Bar-Gad et al. (2003); Gillies and Arbuthnott (2000);

Gurney et al. (2004).

The models can be sorted into three categories, defined by Gillies and Arbuthnott

(2000) as these functional aspects:

Reinforcement learning (RL) Models learning a sequence of actions using rewards

signals delivered in the end of the sequence. The motivation for modeling basal

ganglia using reinforcement learning comes from classical conditioning (Schultz

et al., 1997), described in section 2.3.2 on page 12. By adopting the temporal dif-

ference (TD) learning algorithm (Sutton, 1988), basal ganglia has been successfully

modeled as an actor-critic architecture (Barto, 1995; Suri and Schultz, 1999).

Serial processing Inspired by the looping features of the basal ganglia, serial process-

ing models focuses on how motoric action sequences are learned and applied. The

model of Suri and Schultz (1999) use the environmental context to ‘playback’ the

17

18 CHAPTER 3. PROBLEM DEFINITION AND METHODS

sequence and shows how an actor-critic can perform sequence learning. Beiser and

Houk (1998) investigates how the basal ganglia could encode sequences as spatial

patterns. The Berns and Sejnowski (1998) model learns by associating steps in the

sequence with earlier steps, using different time constants to resolve disambigua-

tions.

Action selection The tonically active outputs of the basal ganglia, globus pallidus

internal (GPi) and substantia nigra pars reticulata (SNr) inhibits thalamus targets.

This suggests that the basal ganglia can perform action selection of motoric actions.

If the cortex projects conflicting motor signals, the basal ganglia allows only the

appropriate actions to proceed, preferably in the correct order (Mink, 1996).

Gurney et al. (2001) shows how a model performing action selection can be an-

alyzed as containing pathways for selection and control, merging the model with

the actor-critic architecture and expanding on the classical view of the direct and

indirect pathways. In Prescott et al. (2006), the model is embedded in a robot,

performing action selection in a live environment.

3.2 Simulating basal ganglia in a robotic simulation

The original problem definition for this work was defined as:

Predicting temporal differences, a simulated model of the Basal

Ganglia

Design a neural net-based model of the Basal Ganglia to be used in a sim-

ulated robot. This will enable the robot to predict the consequences of its

actions based on its previous experiences, particularly those involving re-

wards or punishments. This realizes temporal difference learning in a neural

net controller.

The idea behind this problem definition was to model the basal ganglia and apply it

in a robotic simulation. As a manifestation of sequence learning, a typical task maze

was considered, where the agent was to follow say left-left-right-left and finally receive

a reward. If the model could be compared with temporal difference (TD) learning (as

described in section 2.2.2 on page 6), on repeated occurrences of the reward, the agent

should be able to learn the preceding actions leading to the reward.

The main challenge of this task was considered to be the sequence learning. The

problem definition was therefore refined to the task of learning sequences in a basal

3.3. SEQUENCE LEARNING 19

1 2 3

1 2 3

STR

GP

t=200

1 2 3

1 2 3

STR

GP

t=201

1 2 3

1 2 3

STR

GP

t=202

Figure 3.1: Sequence learning in the basal ganglia. While learning the sequence
1, 2, 3, only a single striatum (STR) unit is made active at a time. The globus
pallidus (GP) units should all be active, except the unit corresponding to the active
STR unit.

ganglia model for action selection. Although not considering the robotic simulation,

future robotic simulation continued to be a motivator. The following section will specify

the task of sequence learning.

3.3 Sequence learning

The problem definition was defined as learning sequences in a basal ganglia model. In

this context, a sequence is considered alternating inputs to the striatum (STR) matrix,

represented by n artificial neurons (called units), one for each possible action of the

sequence.

Each time step, as the sequence is unrolled, a single STR unit will be active, the

unit corresponding to the current action in the sequence. Thus a sequence of say 1, 2, 3

means that in the first time step, only the first STR unit is active, while in the next

time step, the second STR is the only active input.

The model should reproduce those sequences at the output units called globus pallidus

(GP), but inverted. As shown in figure 3.1, that means that if STR unit 2 is active,

then all but the second GP units should be active. This performs action selection, and

as will be explained, sequence learning.

The model is trained by looping the desired sequence until the network dynamics

can be considered stabilised, which means until there is no considerable changes in the

GP outputs compared to the previous learning cycle.

After training, the model is again presented with the first element of the sequence,

called ‘the hint’, and should then reproduce the rest of the sequence at the GP outputs

without further STR activation.

20 CHAPTER 3. PROBLEM DEFINITION AND METHODS

structures as well). Most of the time the Critic (Predictor) is implemented in these models with

great detail while the Actor (Controller) is in the earlier studies only rather generally described

and more details are only added in recent models. We will first compare the different models of

the Critic and at the end of this section the Actors.

4.2.1 The Critic

Reciprocal architectures The implementation of a TD-critic shown in Fig. 4 C is called a

reciprocal architecture, because it assumes a reciprocal connection from the central summation

neuron via the neuron which calculates δ back to the synaptic modification circuit of the central
summation neuron (see also Fig. 8 B,C). These types of models capture some of the basic prop-

erties of the observed neuronal responses. For example, the δ-signal resembles the response of
Prediction-Error neurons, showing the properties of response transfer and omission, while the

v-signal is to some degree similar to the Reward-Expectation neurons.

C C

C (PFC)(C)

S S

S(VS)

SS

DA DA

DADA

GPSTN

r r

r+

+ -
-

+

-

+

-

idealized�reciprocal
architecture

(Montague,�Suri)

C

S

STN

DA r
+

-

Houk�et�al.Cortex�(C)
Frontal
Cortex

VP SNr��GPi

DA-System
(SNc,VTA,RRA)

Thalamus

Striatum�(S)
GPe

STN

Brown�et�al.

Contreras-Vidal�&
Schultz

Berns�&
Sejnowski

A

B C D

E F

excitation inhibition unspecified
(net�excit ation)

dopaminergic�projection
that�modifies�t arget�weight

Figure 8: Matching TD-learning to the basal ganglia. A) Schematic wiring diagram of the basal ganglia show-
ing its main in- and outputs. VP=ventral pallidum, SNr=substantia nigra pars reticulata, SNc=substantia nigra
pars compacta, GPi=globus pallidus pars interna, GPe=globus pallidus pars externa, VTA=ventral tegmental area,
RRA=retrorubral area,STN=subthalamic nucleus. B-F) Simplified circuit diagrams redrawn from the approaches
of different groups adopting the same structure to make them comparable. Cortex=C, striatum=S, DA=dopamine
system, PFC=prefrontal cortex, VS=ventral striatum, GP=globus pallidus, r=reward. B and C represent parallel-
reciprocal architectures where both input streams to the DA-system arise in parallel from the striatum, which in turn
receives DA-signals in a reciprocal way. Accordingly D is a divergent (non-parallel) reciprocal architecture where
the input to the DA system originates in the cortex via two separate striato-nigral pathways. The architecture in E
is parallel, non-reciprocal and that in F is divergent, non-reciprocal. Dashed lines with bullets denote a dopamine
synapse. They end at another synapse which is the one that is modified.

Matching model architectures to the brain Fig. 8 shows a simplified circuit diagram of the

basal ganglia together with its most important inputs and outputs. We will now compare the

existing models to this diagram. For an in-depth treatment of this topic see Daw (2003).

22

Figure 3.2: Temporal difference models of basal ganglia.
A: Box-and-arrows diagram of primary pathways. B: Houk et al. (1995) C:
Montague et al. (1996); Suri and Schultz (2001) D: Brown et al. (1999) E: Berns
and Sejnowski (1998) F: Contreras-Vidal and Schultz (1999)
Reproduced from Wörgötter and Porr (2005, fig. 8).

3.4 Previous work

Computational models of the basal ganglia vary in their architecture depending on the

task that is examined. However, most models seems to be based on the classical view of

the basal ganglia pathways, as explained in section 2.3.1 on page 10. This section will

give an overview over some TD based models of basal ganglia, followed by details of the

models by Berns and Sejnowski and Prescott et al..

3.4.1 Temporal difference models

Figure 3.2 show the diversity of the basal ganglia models based on TD learning, as

reviewed by Wörgötter and Porr (2005). This figure simplifies the dopamine system

(DA) for easier comparison, and show how researchers connect the cortex (C), striatum

(S), globus pallidus (GP) and the subthalamic nucleus (STN). All models except Berns

and Sejnowski (1998) also receive a reward (r).

The model of Houk et al. (1995) was one of the first to follow the actor-critic archi-

tecture. Learning is essentially achieved by the TD rule, by calculating the temporal

difference in the dopamine system, which performs as the critic.

Montague et al. (1996) models dopaminergic projections to the striatum as part of

3.4. PREVIOUS WORK 21

the TD rule, but as pointed out by Wörgötter and Porr (2005), this model assumes a

direct excitatory pathway and an indirect inhibitory pathway, but in reality the situation,

however, is reversed.

Brown et al. (1999) do not use the assumption of direct and indirect pathways, but

follows neurological evidence for a direct projection from the cortex to the dopamine

system, in addition to projections from the ventral striatum. This model applies a set of

band-pass filters to address timing issues that has been uncovered with other approaches.

Berns and Sejnowski (1998) resembles Houk et al. (1995), but implements several

pathways more accurately following the known anatomical structures than any of the

other models (Wörgötter and Porr, 2005). However, the model assumes weight learning

is performed in the projections from subthalamic nucleus (STN) to GP , while the

literature generally suggests that learning is performed in the striatum. This model

calculates the error term internally and do not use a separate reward signal.

Contreras-Vidal and Schultz (1999) also modify weights outside the striatum, but has

been criticised by Wörgötter and Porr for exciting instead of inhibiting the dopamine

system, diverting from the approach of the other models. The model has been used in

simulations for classical conditioning tasks.

3.4.2 Berns and Sejnowski’s model

The model of Berns and Sejnowski (1998) was considered for further examination. The

reason for this is that the original work reported sequence learning and reproduction,

follows the known anatomy of globus pallidus to a great extent, and can be viewed as

an actor-critic architecture.

Their proposed model incorporates many anatomical and physiological aspects of

the basal ganglia shown by neurology. Berns and Sejnowski view the basal ganglia as

an action selection device, a view supported by Barto (1995); Houk et al. (1995); Berns

and Sejnowski (1996); Montague et al. (1996); Gurney et al. (1998).

Berns and Sejnowski models the basal ganglia, as shown in figure 3.3 on the following

page, by including striatum (STR), globus pallidus (GP), subthalamic nucleus (STN) and

substantia nigra pars compacta (SNc). The striatum is viewed as the input stage, while

the GP represents the output stage. Each neuron in the model represents clusters of in

vivo neurons, and is arranged as separate parallel paths, each STR-GP-STN combination

representing a possible action to be selected.

In the direct pathway, the striatum layer directly determines which GP unit is to be

inhibited, i.e. which action is to be selected. The GP neurons project inhibitory to the

22 CHAPTER 3. PROBLEM DEFINITION AND METHODS

error

signal

indirect
pathway

striatum

globus pallidus

error

substantia
nigra

direct
pathway

subthalamic
nucleus

excitatory

inhibitory
weight-

modulating

input

output

fast

slow

input

output

fast

slow

input

output

fast

slow
fixed link
dynamic

link

Figure 3.3: Berns and Sejnowski (1998) computational model of the basal ganglia.
The striatum (STR) neurons represent the input layer of the structure, which have
a direct pathway to the globus pallidus (GP) output layer. The subthalamic nucleus
(STN) consist of both fast and slow neurons with independent projections, and
can be viewed as the hidden layer. The indirect pathway GP -STN-GP should
predict the next STR input. The substantia nigra pars compacta (SNc) monitors
the difference between predicted and actual values, and applies the error signal as
dopaminergic Hebbian learning (Hebb, 1949). This can be viewed as the critic in
actor-critic models, see section 2.1.1 on page 4.

3.4. PREVIOUS WORK 23

1 2 3

1 2 3

STR

GP

t=3

1 2 3STN

1 2 3

1 2 3

STR

GP

t=4

1 2 3STN

1 2 3

1 2 3

STR

GP

t=5

1 2 3STN
future
activation

inhibitory
excitatory

Figure 3.4: Sequence learning in the Berns and Sejnowski’s model. The model
learns the sequence 1, 2, 3, as in figure 3.1 on page 19. The subthalamic nucleus
(STN) units are inhibited by the globus pallidus (GP) units active in the previous
time step, otherwise tonically active. The excitatory STN-GP weights are learned
to activate the non-selected GP units.

thalamus, and so inhibiting the selected GP unit will disable the corresponding thalamus

inhibition, effectively enabling the corresponding action. Example: When striatum unit

2 is active, all but GP unit 2 should be active, inhibiting all but action 2 in the thalamus.

See figure 3.4 and 2.6 on page 11.

The selected action is assumed to be the GP unit with the lowest firing rate, this

can be called ‘loser-take-all’. In this way, the basal ganglia can inhibit all thalamic areas

except the selected action. See section 2.3.1 on page 10 for details.

The STN-GP connections in the indirect pathway are excitatory, and will activate

the GP units that are not inhibited by striatum. All STN units project to all GP units,

and the initial weights (zero) gives no preference to any of the links. The model is to

learn these weights as to maximise the selection so that all but the selected GP unit

will be as active as possible. As the signals are delayed, this means that effectively the

model is to predict which GP units should be activated.

This model excludes the thalamus and the cortex, treats globus pallidus external

(GPe) and globus pallidus internal (GPi) as a single nucleus, simplifies SNc and ignores

substantia nigra pars reticulata (SNr), but it is still one of the computational models

of the basal ganglia that is more accurate to the anatomical structures (Wörgötter and

Porr, 2005).

The subthalamic nucleus (STN) is modeled as a leaky integrator, as in continuous-

time recurrent neural networks (CTRNN) described in section 2.4 on page 14:

dBi(t)

dt
=

1

τ

(
−Bi(t)− αGi(t− δ)

)
(3.1)

24 CHAPTER 3. PROBLEM DEFINITION AND METHODS

where Bi(t) is the activity (firing frequency) of the STN , Gi(t) the activity of the

matching GP unit (with an inhibitory synapse), τ is the time constant and δ the synaptic

delay between the GP and STN units. α is a scaling factor for the magnitude of the

inhibitory connection from GP .

Berns and Sejnowski discretise equation 3.1 on the previous page using the forward

Euler method:

Bi(t) = σ

(
Bi(t−∆t) +

∆t

τ

(
−Bi(t−∆t)− αGi(t− δ)

))
(3.2)

as a modified version of equation 2.3 on page 16, including the sigmoidal transfer function

σ, which is an extended version of equation 2.2 on page 14 introducing a gain γ and a

bias β:

σ(x) =
1

1 + e−γ(x−β)
(3.3)

Berns and Sejnowski (1998) introduce a term λ representing the time constant scaled

by the size of the time step:

λ =
τ

τ + ∆t
(3.4)

Substituting equation 3.4 into equation 3.2 yields the form used in the update rule of

Berns and Sejnowski (1998):

Bi(s) = σ
(
λBi(s− 1)− (1− λ)αGi(s− n)

)
(3.5)

In this discrete version, s represents the discrete time step1, n = δ
∆t

the synaptic

delay as a number of time steps and ∆t is the length of a time step. The transfer

function σ is described by equation 3.3 and normalises the STN output between 0 and

1 to represent the firing frequency.

What is special in this approach is that the transfer function also influences the

internal state (the membrane potential) of the STN . As shown in section 4.2.2 on

page 43 this reduces the effect of the time constants, and sets an implicit bias.

The system output is the firing frequency of the GP units, which is calculated

1Berns and Sejnowski (1998) uses t to represent both the time and the time step. To avoid this
ambiguity, this text will use s for representing the time step in discrete time, while t represents the
actual time in differential equations.

3.4. PREVIOUS WORK 25

without using a leaky integrator:

Gi(s) = σ

(∑
j

wij(s)Bj(s)− αSi(s) + ηi

)
(3.6)

Here wij is the weight of the connection between STN unit j and GP unit i, which is

a dynamic weight and therefore depending on the current time step s, and the output

of the GP unit Gi is calculated by equation 3.5 on the facing page. Si is the activity of

the corresponding STR unit, i.e. the input to the basal ganglia model. ηi is described

as the level of noise drawn from a uniform distribution. See section 4.2.1 on page 40 for

a discussion on how this can be interpreted.

The SNc is modeled as an error unit, calculating the mismatch between the direct

and indirect pathway. The GP output is compared to the weighted STR input:

e(s) =
∑

i

(
Gi(s)− vi(s)Si(s)

)
(3.7)

where vi(s) is a dynamic weight representing the connection between STR unit i and

the SNc .

This error signal is used for updating the weight of the connection between STN unit

j and GP unit i. Every STN unit has connections to all GP units, and the connection

strength wij is updated using a Hebbian learning rule (Sutton and Barto, 1981):

∆wij(s) = ρw

(
e(s)Gi(s)− Si(s)

)
Bj(s) (3.8)

where ρw = 0.05 is the learning rate, e(s) the error signal as calculated by equation 3.7,

Gi the GP output as equation 3.6, Si the STR input, and Bj the STN output as by

equation 3.5 on the facing page.

A simpler update rule is used for the connections from the STR to the error unit

SNc :

∆vi(s) = ρve(s)Si(s) (3.9)

where the learning rate is ρv = 0.1 in the experiments described by Berns and Sejnowski

(1998).

26 CHAPTER 3. PROBLEM DEFINITION AND METHODS

Experiments and results

Berns and Sejnowski trained their network to learn sequences. The sequence 1, 2, 3, 4, 2, 5

was chosen because it is simple, yet the model would have to distinguish between 3

or 5 following 2. For each time step, the sequence was iterated, and the STN unit

corresponding to the number from the sequence was made the only active STN unit.

During training, the activity of the non-selected GP units gradually raised as STN-

GP weights were modified by equation 3.8 on the previous page. Figure 4.3 on page 36

shows how the model learned to increase the weights to GP unit 2 from STN units 2,

3 and 5, thus predicting that if STN unit 1 or 4 are active, GP unit 2 is the next to be

selected.

After 200 time steps of training, the GP outputs were following almost exact the

inverse of the STR inputs, such that the STN units increased the activation of non-

selected GP units, but not the action that is inhibited by STR . This showed that the

model was able to learn the sequence.

Berns and Sejnowski tested the network after learning the sequence, by cueing it by

activating the first STR unit of the sequence. The network was able to reproduce the

sequence without any further inputs from the striatum. The GP outputs were noisy,

but the correct unit had minimal activity at each time step.

3.4.3 Prescott et al.

Prescott et al. (2006) presents a model of the basal ganglia embedded in a robot. The

model is based on the authors’ previous work Humphries and Gurney (2002), and per-

forms effective action selection for a robot tested under conflicting situations.

The main idea of Prescott et al. is that the basal ganglia acts as an action selection

mechanism – resolving conflicts between functional units that are physically separated

within the brain but are in competition for behavioral expression.

The basal ganglia model is embedded in a robot and given the task to select actions

depending on sensory and motivational conditions. The challenge is for the model to

perform clean action selection even with multiple high-salience alternatives.

Figure ?? on page ?? show the pathways in the model suggested by Prescott et al.

(2006). Note that authors have based their model of the rat basal ganglia instead of the

human version, which main difference is that the GPi is replaced by the entopeduncular

nucleus (EP). In addition, the two main types of dopaminergic receptors in striatum,

D1 and D2 are treated separately, and used as parts of the functional select and control

pathways, as presented in Gurney et al. (2001).

3.5. EXPERIMENT DETAILS 27

and on local inhibitory connections within the globus
pallidus and substantia nigra (Gurney, Humphries et al.,
2004; Humphries, Prescott, & Gurney, 2003). Both
extensions also appear to enhance the selectivity of the
system and, in adding further biological realism, lend
further support to the selection hypothesis of basal ganglia
function.

An effective action selection mechanism should be
sensitive to changes in salience weightings that alter the
relative urgency of competing behaviors in a given context.
It is less evident, however, how a selection mechanism
should respond to changes in salience weightings that leave
relative salience unchanged whilst scaling the overall level
of the selection competition. The assumption encapsulated
by the widely used winner-takes-all selection mechanism,
for example, is that the overall level of salience is irrelevant
(the competitor with highest salience is always preferred).
We have previously demonstrated that the selection proper-
ties of both the intrinsic (Gurney et al., 2001b) and extended
(Humphries and Gurney, 2002) basal ganglia models do not
conform to this assumption, but instead, vary according to
the overall ‘intensity’ of the selection competition. We will
extend this work below by showing that that the degree of
hysteresis, or persistence, of the winning sub-system may
change as a consequence of changes in the overall level of
salience. Our previous studies noted interesting patterns of
‘multiple channel’ selection when the model is presented

with multiple, high salience alternatives. We, therefore,
investigate the behavior of the robot model in these
circumstances, and consider possible parallels with obser-
vations derived from ethological studies of behavioral
conflict.

3. Developing a robot model of action selection
by the basal ganglia

The modeling work considered above serves to demon-
strate signal selection by the basal ganglia rather than action
selection per se. To show convincingly that the basal ganglia
model is able to operate as an effective action selection
device we believe it needs to be embedded in a real-time
sensorimotor interaction with the physical world. An
important goal has, therefore, been to construct an
embedded basal ganglia model in which selection occurs
between multiple, physically realized behaviors in a mobile
robot. Since the use of robotics in computational neuro-
science is relatively new, we preface our description of this
model with a brief explanation of how we approach this task
of embedding a computational neuroscience model within a
robot architecture that generates observable behavior.

3.1. A methodology for embodied computational
neuroscience

Any computational neuroscience model, robotic or
otherwise, is composed of components that are ‘biomi-
metic’—that is, they are intended to directly simulate
neurobiological processes (at some appropriate level), and
those that are merely ‘engineered’ so as to provide an
interface that will allow the model to be interrogated and
evaluated. The need for engineered components is particu-
larly obvious in the case of robotic models where
simulations of neural circuits must, at some point, be
interfaced with (usually) very-non-neural robot hardware.
Furthermore, in models that seek to simulate complete
behavioural competences it is also generally impractical,
because of the scale of the task, or impossible, because of
the lack of the necessary neurobiological data, to simulate
all components of the neural substrate for the target
competence at a given level of detail. In this situation,
engineered components are also required to substitute for
the function of some of the neural circuits, known or non-
known, that are involved in the production of that
competence in an animal. In the current model, since
the biological substrate of interest is the basal ganglia, the
system components that provide the interface between the
robot hardware (and low-level controllers) and the models
of the basal ganglia and related nuclei have been constructed
as a set of engineered sub-systems that we collectively
denote as the embedding architecture. While broadly
‘biologically inspired’, we would stress that this embedding

Fig. 3. The extended basal ganglia model of Humphries and Gurney (2002).

Abbreviations: SSC, somatosensory cortex; MC, motor cortex; VL, ventro-

lateral thalamus; TRN, thalamic-reticular nucleus, others as per Fig. 1.
Connectivity within the basal ganglia component of the model is as shown

in Fig. 2c. Basal ganglia-thalamocortical loops can be understood as

providing additional mechanisms that can contribute to effective action

selection. First, the removal of basal ganglia inhibition from VL completes
a positive feedback loop to the motor cortex. Second, the diffuse inhibitory

connections from TRN to VL, which are stronger between channels than

within channels (as indicated by the plain and dotted inhibitory connections
in the figure), together with within-channel excitation from VL to TRN,

produces a form of mutual inhibition between channels. See text and

Humphries and Gurney (2002) for further explanation.

T.J. Prescott et al. / Neural Networks 19 (2006) 31–61 35

the basal ganglia (Gurney et al., 2001a,b) focused on the
following candidate selection mechanisms.

First, at the cellular level considerable interest has
focused on an intrinsic property of striatal projection
neurons such that, at any given moment, a majority of
cells are in an inactive ‘down-state’, and can only be
triggered into an active ‘up-state’ (where they can fire action
potentials) by a significant amount of coincident input
(Wilson & Kawaguchi, 1996). This bistable behavior could
act as a high-pass filter to exclude weakly supported
‘requests’.

Second, computational theory suggests that a feed-
forward, off-centre, on-surround network is an appropriate
mechanism for enhancing signal selection. In the basal
ganglia, this type of selection circuit appears to be
implemented by a combination of focused striatal inhibition
of the output nuclei (the off-centre) and diffuse STN
excitation of the same (the on-surround) (Parent & Hazrati,
1995). On closer examination, however, it appears that there
are actually two such feed-forward networks in the basal
ganglia intrinsic circuitry (see Fig. 2a and b), differentiated
by the projection targets of the D1-type and D2-type sub-
populations of striatal neurons. One instantiation (Fig. 2a)
makes use of EP/SNr as its ‘output layer’; since this is
clearly consistent with our signal selection hypothesis for
the basal ganglia we have designated this circuit the
selection pathway. However, there is also a second
implementation of the feed-forward architecture whose
target is the GP (Fig. 2b). Since the efferent connections of
the GP are confined to other basal ganglia nuclei it is not
immediately clear in what sense this second implementation
can contribute to the overall selection task. This question
can be resolved by supposing that this second sub-system
forms a control pathway that functions to regulate the
properties of the main selection mechanism. The control
signals emanating from GP are evident when the two sub-
systems are combined to give the overall functional
architecture shown in Fig. 2c.

In our original system-level model, we operationalized
the above circuit (Fig. 2c) as a multi-channel system where,

for every basal ganglia nucleus, the neural population
encoding each channel is simulated by a suitably configured
leaky integrator unit. Analytical and simulation studies
(Gurney et al., 2001a,b) conducted with this model
demonstrated that it has the capacity to support effective
switching between multiple competitors. In simulation, two
or more channels of the model were provided with afferent
input in the form of hand-crafted signals of different
amplitude. Results showed that the largest signal input
always generates the smallest signal output (thus showing
signal selection), and that the system rapidly switches from
a currently selected channel to a competing channel that
suddenly has a larger input. We were also able to generate
signal characteristics in the component circuits of our basal
ganglia model that follow similar temporal patterns to
single-unit recordings of neural firing in GP (Ryan & Clark,
1991) and SNr (Schultz, 1986).

Humphries and Gurney extended the original model of
intrinsic basal ganglia processing to include basal ganglia-
thalamocortical loops (Humphries & Gurney, 2002). This
work led to the proposal that the thalamic complex—the
ventro-lateral (VL) thalamus and thalamic-reticular nucleus
(TRN)—acts to provide additional selection-related
functionality. Specifically, as shown in Fig. 3, these circuits
can be understood as sub-serving two important roles. First,
disinhibition of VL thalamic targets by EP/SNr enables a
positive feedback loop whereby winning basal ganglia
channels can increase the activation of their own cortical
inputs. Second, the within- and between- channel connec-
tions between the TRN and the VL thalamus appear to
implement a distal lateral-inhibition network that serves to
increase the activity of the most strongly innervated channel
at the expense of its neighbors. In simulation, again with
hand-crafted signals, the additional selective functions of
these extra-basal ganglia mechanisms were found to
promote several desirable selection features including
cleaner switching between channels of closely matched
salience, and the ability to ignore transient salience
interrupts. Recently, we have also shown that the model
can accommodate new data on striato pallidal projections,

Fig. 2. The basal ganglia viewed as an action selection mechanism. Abbreviations as per Fig. 1. Our analysis of the basal ganglia intrinsic connectivity (Gurney

et al., 2001a,b) indicated the presence of two off-centre, on-surround, feed-forward networks. One instantiation: (a) makes use of EP/SNr as its ‘output layer’
and is designated the selection pathway, the second (b) targets GP and is designated the control pathway. The control signals emanating from GP are evident

when the two sub-systems are combined to give the overall functional architecture shown in Figure c.

T.J. Prescott et al. / Neural Networks 19 (2006) 31–6134

Figure 3.5: Humphries and Gurney basal ganglia model. Box c) to the left
shows the internals of the basal ganglia model, while the rest of the figure shows
how the basal ganglia is connected to the cortex and the thalamus. The pathways
are considered performing selection and control. Reproduced from ?.

This model also includes the GP -thalamic-cortex pathways and internals, thereby

completing the motor loop and making the model far more compelex than that of Berns

and Sejnowski (1998).

As the works of Prescott et al. has shown action selection embedded in a live robot,

their model is also examined in this work and compared with the Berns and Sejnowski

model.

3.5 Experiment details

This section describes and justifies technology choices done while performing this work.

First, an attempt to model the basal ganglia using C++ is presented, followed by a

discussion on why prototyping using Python turned out to be more convenient.

The rest of this chapter details how implementing the Berns and Sejnowski model

was achieved.

28 CHAPTER 3. PROBLEM DEFINITION AND METHODS

3.5.1 Implementation frameworks

Prototyping using C++

Initial prototypes were developed using C++ (iso, 2003), on the basis of the possible

fast execution time of compiled code, in case the simulations were to be scaled up for

a robot simulation or tuned by genetic algorithms, both requiring massive amounts of

evaluations. Many existing robot simulation environments such as YAKS (Carlsson and

Ziemke, 2001) are developed in C or C++, and could be easy to combine with a basal

ganglia model in C++.

C++ is also an object-oriented language which was considered suitable for experi-

menting with different network layouts and techniques for modeling the basal ganglia.

As a basis for building artificial neural networks in C++, the open source library annie

was used and extended.

Annie (Shankar) is a library for building artificial neural networks, implemented

in C++ with an object-oriented design. In annie, a network is built by instantiating

classes like RecurrentNeuron within a Layer of a Network. Neurons can be connected

to each other by method calls, and parameters such as the activation function can be

set individually.

The following code extract shows how the neurons for the globus pallidus and sub-

thalamic nucleus were created and connected in the basal ganglia prototype developed

in C++.

/* addNeuron(layer) creates the neuron and adds it to the layer */

RecurrentNeuron *n_gp = addNeuron(gp);

RecurrentNeuron *n_stn = addNeuron(stn);

n_stn->setActivationFunction(ganglia::biased_sigmoid);

n_gp->setActivationFunction(ganglia::biased_sigmoid);

// direct pathway

n_gp->connect(n_str, STR_GP_WEIGHT);

// indirect pathway

n_stn->connect(n_gp, GP_STN_WEIGHT);

Being able to specialise each type and connect the network step by step was consid-

ered important for building a basal ganglia model, and annie proved to be the best tool

for doing this in C++. Using the annie library simplified development and shifted focus

from evaluating neural networks to the structure of the network.

C++ is designed to be used for industrial strength software development. As such,

3.5. EXPERIMENT DETAILS 29

the language utilises strong typing and generally making code rigid, for instance by

distinguishing between private or public methods, or tagging methods and parameters

as constant. These are valuable features when designing business software for stable,

long term use. As C++ is based on C, the C++ developer occasionally also has to deal

with pointers and memory allocations.

However, when designing scientific prototypes these features seems to be not as im-

portant as for the IT consultant. While building a functional neural network model of

the basal ganglia, focus was kept at the C++ level, by changing the interfaces to allow

access to private methods and attributes, casting and converting between different types,

and debugging segmentation faults.

It was concluded that C++ was not the best choice of language for prototyping

scientific challenges such as modeling the basal ganglia. It was desirable to use a higher

level language resembling the mathematics, not the implementation.

Prototyping using Python

Initially as an experiment to verify outputs from the model, after two months of C++

coding, the current prototype was reimplemented in the programming language Python

(van Rossum, 2005). The reimplementation, although much simplified compared to the

C++ model at the time, was completed in less than a day. This gave a strong indica-

tion that C++ was not the right language for experiments which constantly demanded

changing structures and constants, extensive statistical logging and debugging through

inspection.

Further development were therefore performed using Python. Python is a high-level

object-oriented dynamic programming language, which some of the main goals are that

it should be easy to learn, write and read. Compared to many languages, Python code

can be straight forward, it has been likened to executable pseudocode.

Compared to languages as C++ and Java, Python provides faster prototyping and

makes it is easy to experiment with language features and your own code. However, as

it is an interpreted and not a compiled language, execution time is not comparable to

C++. It was considered that slightly larger execution time was not important compared

to the goal of building a suitable model of the basal ganglia.

There are many open source third-party libraries available for Python, including an

numeric library called NumPy (Oliphant). NumPy provides among other things highly

optimised methods for matrix calculations.

NumPy was chosen because calculating artificial neural networks using linear algebra

30 CHAPTER 3. PROBLEM DEFINITION AND METHODS

gives cleaner code than using traditional for-loops. For instance, calculating a time step

in a CTRNN (see section 2.4 on page 14) for all neurons, and even supporting unique

time constants for each neuron can be expressed as 4 lines of Python code:

inputs = numpy.matrixmultiply(output, weight)

change = timestep/timeconst * (-potential + inputs + bias)

potential += change

output = map(transfer, potential)

In the code above, the variables output, potential, bias, inputs and change are

all n-sized vectors, while weight is an n× n sized matrix. The code is easily compared

to a vector version of equation 2.3 on page 16:

~y(t + ∆t) = ~y(t) +
∆t

~τ

(
− ~y(t) + ~u(t)×W + ~θ

)
(3.10)

~u(t) = σ
(
~y(t)

)
(3.11)

In addition to making code clearer, the matrix operations of NumPy are implemented

using static compiled languages as C and FORTRAN and exploit CPU vector features

such as the Altivec engine (Diefendorff et al., 2000), which in informal tests on the basal

ganglia model gave a considerable speed-up compared to pure Python code, in some

cases by a factor 30.

In this work, experimenting with network shapes and layout was essential, and so

keeping a high-level view of the calculations seemed like a reasonable approach, justifying

the choice of using NumPy.

3.5.2 Implementing the model of Berns and Sejnowski

In the attempt of reproducing the results of Berns and Sejnowski (1998), a model directly

mirroring the equations as described in section 3.4.2 on page 21 was implemented in

Python. Each equation was implemented as a function. For instance, equation 3.6 on

page 25 was implemented as:

def calc_GP(self, i):

sum = 0.0

for j in range(self.inputs*2):

sum += self.w[i,j]*self.STN[j]

noise = random.uniform(-0.25, 0.25)

result = sum - self.effect * self.STR[i] + noise

return self.sigmoid(result)

3.5. EXPERIMENT DETAILS 31

Some implementation details were not immediately evident from the paper, for in-

stance the use of noise, as detailed in section 4.2.1 on page 40. After experimenting with

the effects of the different possible interpretations, it was concluded that for noise drawn

from a uniform distribution with a magnitude of 0.5 (Berns and Sejnowski, 1998) should

be implemented as a random value drawn from the uniform distribution between −0.25

and 0.25, redrawn at each time step and for each input.

3.5.3 Implementing the model of Prescott et al.

The model by Prescott et al. (2006) was implemented using the Python CTRNN library

developed. The reported task of action selection ..

Tests shows it works. Most notably, the Prescott model does not include the concept

of learning. OK!

32 CHAPTER 3. PROBLEM DEFINITION AND METHODS

Chapter 4

Experimental Results

This chapter presents the results of reproducing the Berns and Sejnowski model. Results

from the reimplementation are compared to results in the original work.

Finally, this chapter describes how details of the implementation was refined to clarify

details from the original work.

4.1 Reproducing the model of Berns and Sejnowski

As described in section 3.5.2 on page 30, the exact equations from Berns and Sejnowski

(1998) was implemented to reproduce the results of their basal ganglia model. The

reimplementation results matched the original results only partially. This section details

the expected and achieved results of the direct reimplementation.

4.1.1 Globus pallidus activity

Figure 4.1 on the following page shows the expected globus pallidus (GP) activity while

learning a sequence as reported by Berns and Sejnowski (1998). While the GP units

initially do not fire very organised, after learning they should approach the inverse of

the striatum (STR) inputs. When action n is selected in STR , all GP units except unit

n should be fully activated, while unit n should be fully inhibited. As the GP projects

to the thalamus, this should inhibit all actions except action n in the thalamus.

The reimplementation results for the GP activation, shown in figure 4.2 on the next

page, shows that the initial activities are somewhat diffuse, although the selected actions

are inhibited. Since the noise is drawn from a random distribution, the activities of non-

inhibited units does not match those of figure 4.1 on the following page. After learning,

33

34 CHAPTER 4. EXPERIMENTAL RESULTS

evidenced by the error at time step 12. The ambiguity
associated with unit 2 is resolved by the differential
activations between the short and long STN units. More
complex sequences, typically of length greater than 10,
exceeded the model’s ability to reliably reproduce them.
More complex ambiguities also resulted in incorrect
reproductions.

The parameter sensitivity revealed that the model is
robust, but beyond certain limits various degradations
occurred. The ratio of STR/GP learning rates signi!cantly
affected performance. Decreasing the ratio to 1 resulted
in persistently high error signals because the STR pre-
diction was slow to learn, which in turn resulted in STN
weights that continued to increase longer. With persist-
ently increasing weights, the model lost the ability to
disambiguate the context of certain activity patterns,
yielding the sequence 1, 2, 5, 1, 2, 5, With a learning
ratio of 4, the same sequence was produced, but this was
due to the rapid cessation of learning as the striatal
weights rapidly adjusted and the error went to zero

before many of the STN to GP weights had achieved
their correct values. Diminishing the degree of inhibitory
override, by decreasing a to 1, resulted in maximal acti-
vation of all the GP units during training because the
striatum had insuf!cient inhibition to directly select an
action. The end result, after training, was a uniform
weight matrix with all weights close to 1. With this
weight matrix, the sequence could not be produced at
all. Changing the gain (g) and bias (b) parameters, with
gains ranging from 2 to 8 and biases ranging from 0.1,
to 0.2, did not signi!cantly affect the production of
sequences; however, certain combinations of gain and
bias yielded GP activities that were subtly different.

The aforementioned sequence demonstrated how the
model learned a sequence requiring the disambiguation
of context. We also tested the model’s ability to shift
between a random sequence and a repeating 10-item
sequence. This was done, in part, to test the model on a
well-studied behavioral task of procedural learning (Will-
ingham, Nissen, & Bullemer, 1989). The model was pre-

Figure�4. Unit activities during learning the sequence 1, 2, 3, 4, 2, 5. With layers of !ve units each, activities are shown from 0 (black) to 1
(white) for striatum (STR), globus pallidus (GP), and the two subthalamic nucleus layers with short time constant (STN Short) and long time
constant (STN Long). Panel A shows the activity patterns during the initial 20 time steps of training, and Panel B shows the activity patterns af-
ter 200 time steps. Using the parameters given in Table 2, the striatum trained the globus pallidus to produce a sequence of actions. Initially,
the GP activities were low and disorganized because of minimal excitation from the STN. Subsequently, the weights, and hence the GP activi-
ties, increased except for those corresponding to the action that was actively inhibited by the striatum.

Berns and Sejnowski 113

evidenced by the error at time step 12. The ambiguity
associated with unit 2 is resolved by the differential
activations between the short and long STN units. More
complex sequences, typically of length greater than 10,
exceeded the model’s ability to reliably reproduce them.
More complex ambiguities also resulted in incorrect
reproductions.

The parameter sensitivity revealed that the model is
robust, but beyond certain limits various degradations
occurred. The ratio of STR/GP learning rates signi!cantly
affected performance. Decreasing the ratio to 1 resulted
in persistently high error signals because the STR pre-
diction was slow to learn, which in turn resulted in STN
weights that continued to increase longer. With persist-
ently increasing weights, the model lost the ability to
disambiguate the context of certain activity patterns,
yielding the sequence 1, 2, 5, 1, 2, 5, With a learning
ratio of 4, the same sequence was produced, but this was
due to the rapid cessation of learning as the striatal
weights rapidly adjusted and the error went to zero

before many of the STN to GP weights had achieved
their correct values. Diminishing the degree of inhibitory
override, by decreasing a to 1, resulted in maximal acti-
vation of all the GP units during training because the
striatum had insuf!cient inhibition to directly select an
action. The end result, after training, was a uniform
weight matrix with all weights close to 1. With this
weight matrix, the sequence could not be produced at
all. Changing the gain (g) and bias (b) parameters, with
gains ranging from 2 to 8 and biases ranging from 0.1,
to 0.2, did not signi!cantly affect the production of
sequences; however, certain combinations of gain and
bias yielded GP activities that were subtly different.

The aforementioned sequence demonstrated how the
model learned a sequence requiring the disambiguation
of context. We also tested the model’s ability to shift
between a random sequence and a repeating 10-item
sequence. This was done, in part, to test the model on a
well-studied behavioral task of procedural learning (Will-
ingham, Nissen, & Bullemer, 1989). The model was pre-

Figure�4. Unit activities during learning the sequence 1, 2, 3, 4, 2, 5. With layers of !ve units each, activities are shown from 0 (black) to 1
(white) for striatum (STR), globus pallidus (GP), and the two subthalamic nucleus layers with short time constant (STN Short) and long time
constant (STN Long). Panel A shows the activity patterns during the initial 20 time steps of training, and Panel B shows the activity patterns af-
ter 200 time steps. Using the parameters given in Table 2, the striatum trained the globus pallidus to produce a sequence of actions. Initially,
the GP activities were low and disorganized because of minimal excitation from the STN. Subsequently, the weights, and hence the GP activi-
ties, increased except for those corresponding to the action that was actively inhibited by the striatum.

Berns and Sejnowski 113

Figure 4.1: Globus pallidus activities during learning in Berns and Sejnowski
(1998). Shading indicates the globus pallidus (GP) activity while learning the
sequence 1, 2, 3, 4, 2, 5, grading from from black (0) to white (1). In the initial
time steps, GP unit firing is disorganised, but after 200 time steps of training,
the activities almost exactly mirrors the inverse of the input sequence, where the
selected unit is fully inhibited and the other units fully activated. Reproduced from
Berns and Sejnowski (1998, fig. 4a).

GP 5
4
3
2
1

GP 5
4
3
2
1

1 20

200180

Figure 4.2: Globus pallidus activities during learning in reimplementation.
Compare with figure 4.1. The reimplementation activities resembles the results of
Berns and Sejnowski (1998), after 200 time steps the units are either fully inhibited
(selected) or fully activated.

4.1. REPRODUCING THE MODEL OF BERNS AND SEJNOWSKI 35

the non-selected units are fully activated due to the learning of the weights from the

subthalamic nucleus .

4.1.2 Weight learning

The basal ganglia model is to learn to predict a sequence. In the implementation of

Berns and Sejnowski this prediction is shown by exciting the GP units that are not

going to be selected in the current time step.

The direct pathway directly inhibits the selected GP unit corresponding to the

active STR unit. The indirect pathway through subthalamic nucleus (STN) excites all

the other GP units. As the indirect pathway in this model is delayed and has to react

according to previous GP activities, the model will have to learn to predict which GP

units are to be excited.

As an example, the GP unit 2 is never inhibited two time steps at a row while

learning 1, 2, 3, 4, 2, 5. The time step after GP unit 2 has been inhibited (selected), the

STN unit 2 (assuming short time constants1) will be tonically active, since it will no

longer be under inhibition from GP unit 2. Since the GP unit is never selected twice

in a row, an active STN unit 2 is an indicator that GP unit 2 should be excited. The

same is true for active STN units 3 and 5, as in the sequence 2 does not follow 3 or 5.

The model of Berns and Sejnowski (1998) correctly learns these weights, strengthen-

ing the connections from STN units 2, 3 and 5, and weakening the others. Figure 4.3

on the next page shows how the weights of connections from the short time constant

STN unit is learned.

The connections to GP unit 2 from STN units 3, 5, and particularly 2 shows the

direct relations between firing of STN units and GP units. Since an STN unit is

tonically active unless inhibited by the corresponding GP unit, the mapping will also

show the sequencing.

However, STN units 1 and 4 are both active at the same time as the GP unit 2,

because in the sequence, 2 follows both 1 and 4. Thus there is not any strong activation

from these units, in fact the learning approaches these weights to zero.

In the reimplementation of the Berns and Sejnowski model, the weight changed in a

similar way, as shown in figure 4.4 on the following page. The weights from GP unit

1 and 4 do not increase as much as the predicting units, and the weight from the GP

1For longer time constants, the STN units will be active for more than 1 time step, thus blurring
the activity levels over time, but the peak activity will still be in the time step after the corresponding
GP selection.

36 CHAPTER 4. EXPERIMENTAL RESULTS

sented with 100 trials of randomly ordered stimuli (1, 2,
3, or 4), then 40 repetitions of the sequence 4-2-3-1-3-2-
4-3-2-1, followed by another 100 trials of random stimuli.
In order to compare the GP output to previously re-
ported reaction times, the GP output was linearly trans-
formed by

R(t) = 1
1
N å

i=1

N

Gi(t) (9)

where N was the number of GP units (4 in this case).
R(t) represented a normalized reaction time at time step
t and ranged from 0 to 1. This linearly scaled the match
between the direct and indirect pathways, with the bet-
ter the match, the lower the reaction time. As shown in
Figure 8A, the reaction time initially declined even with
a random sequence and then rapidly reached a stable
level with the introduction of the repeating sequence. It
stabilized at the value 0.25 because the inherent struc-
ture of the sequence allowed for maximal activation of
all GP units except the one being selected. When the
random sequence was reintroduced, the normalized re-
action time became slightly longer.

We also used this paradigm to model the effects of
Parkinson’s disease and the subsequent improvement of
symptoms from pallidotomy (Figure 8, parts B and C).
Parkinson’s disease was modeled by decreasing the
learning rate (r in Equation 6) from 0.025 to 0.005,
re!ecting the overall decline in dopamine that is found

in Parkinson’s disease. This resulted in substantially
slower learning, as evidenced by the lower slope in
Figure 8B, but because the GP activations were generally
lower, the effect of noise was also more prominent. The
effects of the decreased learning rate could largely be
ameliorated by increasing the gain of both the GP and
STN units from 4 to 8. As the gain was increased, units
that were previously marginally active became maxi-
mally active, and thus the "rst term in Equation 6 in-
creased, partially offsetting the decreased learning rate.
This suggests that a potential mechanism for the ef"cacy
of pallidotomy is in the alteration of the gain of pools of
neurons in both the STN and GP. One prediction is that
even though the rate of learning is partially restored, the
effect of noise still remains.

Figure�5. Changes in connection strengths, wij, from learning the se-
quence 1, 2, 3, 4, 2, 5. The "ve weights from the "ve STN units with
short time constants to GP unit 2 are shown. The three weights that
increased to saturation levels were from STN units 2, 3, and 5 (i.e.,
those STN units that were not active prior to GP unit 2 being ac-
tive). Conversely, the weights from STN units 1 and 4 did not in-
crease signi"cantly because when these units were active, GP unit 2
was inhibited by the striatum.

Figure�6. Levels of the “reward” (A) from the GP and the error sig-
nal from the SNc/VTA (B) during learning the sequence 1, 2, 3, 4, 2,
5. The reward was computed as the sum of the GP activities and
was proportional to how well the GP activity vector matched the in-
verse of the striatal activity vector. As the system learned to produce
the sequence, the match, and hence the reward, increased. The error
signal, which was computed by Equation 7, represented the differ-
ence between a weighted sum of the striatal activity and the sum of
the GP activity. The weights on the striatal activities were modi"ed
by the error signal, and thus the difference ultimately converged to
zero. Note that the variance also decreased.

114 Journal of Cognitive Neuroscience Volume 10, Number 1

Figure 4.3: Changes in connection strengths when learning sequence (original).
Weights from the five subthalamic nucleus (STN) units with short time constants
to globus pallidus (GP) unit 2 are shown while learning the sequence 1, 2, 3, 4, 2, 5.
The three weights that increased to saturation are from STN unit 2, 3 and 5, units
that were not active prior to GP unit 2 firing. When STN units 1 and 4 were
active, GP unit 2 was inhibited by the striatum (STR), and therefore the weights
for these connections were not significantly increased. Reproduced from Berns and
Sejnowski (1998, fig. 5).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

w
ei

gh
t

timestep

STN 1
STN 2
STN 3
STN 4
STN 5

Figure 4.4: Changes in connection strengths when learning sequence (reimple-
mented). Weights from the five subthalamic nucleus (STN) units with long time
constants to globus pallidus (GP) unit 2 while learning the sequence 1, 2, 3, 4, 2, 5.
The weight changes resembles those of figure 4.3, except that the connection from
STN unit 2 grows faster.

4.1. REPRODUCING THE MODEL OF BERNS AND SEJNOWSKI 37

unit 2 grows three times as fast as the weights from units 3 and 5. There is an possible

explanation for this, even though the three units equally predicts that GP unit 2 is not

to fire in the next time step. The STN unit 2 fires twice as often as the others, and the

weight is therefore strengthened twice as often. In addition, the pre-synaptic activity

part of the weight change equation 3.8 on page 25 makes the weight grow proportionally

to the STN output, which in average will stay higher in unit 2, both due to rapid

activation and long time constants.

Note that the reimplementation figure shows the development of the connections

from the long time constant STN units. The weights from the short time constants

(not shown) also developed strong connections from STN units 2, 3 and 5, but did not

feature the “rise and fall” of weights from unit 1 and 4. With short time constants, the

STN 1 and STN 4 weights were learned to be zero after just a few time steps. This

seems reasonable, for short time constants the STN units will only be active immediately

after the activation of the corresponding GP unit, as shown by the sawtooth shape in

figure 4.5 on the following page.

4.1.3 Error values

The error values as produced by equation 3.7 on page 25 did not behave as expected in

the reimplementation. According to figure 6b) in Berns and Sejnowski (1998), the error

should start out quite stochastic with a maximum at about 3, and then approach an

area near zero, due to the learned STN to GP connections and the increasing STR to

GP inhibiting connections. Figure 4.6 on the following page shows the expected error

value distribution, while figure 4.7 on page 39 shows the error value distribution of the

reimplementation.

There is at least one possible reason to why the error function 3.7 on page 25 does

not perform as expected. During learning, all but one STR units outputs 0, while the

active unit outputs 1. The goal of the learning is for all GP units except one to output

1, while the selected unit is totally inhibited.

Since the given error equation sums the GP activity and subtract a weighted sum of

STR activity, it should approach the n− 1 fully active GP units minus one fully active

STR unit. So for a sequence with n = 5 different values, the error should approach 3,

which matches figure 4.7 on page 39.

38 CHAPTER 4. EXPERIMENTAL RESULTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 50 52 54 56 58 60 62

ou
tp

ut

timestep

STN 2 short
STN 2 long

Figure 4.5: Firing of subthalamic nucleus unit 2. The subthalamic nucleus
(STN) unit with a short time constant gives a sawtooth shaped output, reacting
solely to the current signal. The unit with a long time constant decays after the
input signal, but not fast enough to reach zero before the next input. Note that the
inputting globus pallidus (GP) unit 2 will fire twice as often as the other units.

sented with 100 trials of randomly ordered stimuli (1, 2,
3, or 4), then 40 repetitions of the sequence 4-2-3-1-3-2-
4-3-2-1, followed by another 100 trials of random stimuli.
In order to compare the GP output to previously re-
ported reaction times, the GP output was linearly trans-
formed by

R(t) = 1
1
N å

i=1

N

Gi(t) (9)

where N was the number of GP units (4 in this case).
R(t) represented a normalized reaction time at time step
t and ranged from 0 to 1. This linearly scaled the match
between the direct and indirect pathways, with the bet-
ter the match, the lower the reaction time. As shown in
Figure 8A, the reaction time initially declined even with
a random sequence and then rapidly reached a stable
level with the introduction of the repeating sequence. It
stabilized at the value 0.25 because the inherent struc-
ture of the sequence allowed for maximal activation of
all GP units except the one being selected. When the
random sequence was reintroduced, the normalized re-
action time became slightly longer.

We also used this paradigm to model the effects of
Parkinson’s disease and the subsequent improvement of
symptoms from pallidotomy (Figure 8, parts B and C).
Parkinson’s disease was modeled by decreasing the
learning rate (r in Equation 6) from 0.025 to 0.005,
re!ecting the overall decline in dopamine that is found

in Parkinson’s disease. This resulted in substantially
slower learning, as evidenced by the lower slope in
Figure 8B, but because the GP activations were generally
lower, the effect of noise was also more prominent. The
effects of the decreased learning rate could largely be
ameliorated by increasing the gain of both the GP and
STN units from 4 to 8. As the gain was increased, units
that were previously marginally active became maxi-
mally active, and thus the "rst term in Equation 6 in-
creased, partially offsetting the decreased learning rate.
This suggests that a potential mechanism for the ef"cacy
of pallidotomy is in the alteration of the gain of pools of
neurons in both the STN and GP. One prediction is that
even though the rate of learning is partially restored, the
effect of noise still remains.

Figure�5. Changes in connection strengths, wij, from learning the se-
quence 1, 2, 3, 4, 2, 5. The "ve weights from the "ve STN units with
short time constants to GP unit 2 are shown. The three weights that
increased to saturation levels were from STN units 2, 3, and 5 (i.e.,
those STN units that were not active prior to GP unit 2 being ac-
tive). Conversely, the weights from STN units 1 and 4 did not in-
crease signi"cantly because when these units were active, GP unit 2
was inhibited by the striatum.

Figure�6. Levels of the “reward” (A) from the GP and the error sig-
nal from the SNc/VTA (B) during learning the sequence 1, 2, 3, 4, 2,
5. The reward was computed as the sum of the GP activities and
was proportional to how well the GP activity vector matched the in-
verse of the striatal activity vector. As the system learned to produce
the sequence, the match, and hence the reward, increased. The error
signal, which was computed by Equation 7, represented the differ-
ence between a weighted sum of the striatal activity and the sum of
the GP activity. The weights on the striatal activities were modi"ed
by the error signal, and thus the difference ultimately converged to
zero. Note that the variance also decreased.

114 Journal of Cognitive Neuroscience Volume 10, Number 1

Figure 4.6: Error value distribution (original). The error signal is calculated by
equation 3.7 on page 25, the difference between the weighted sum of the striatum
(STR) activity and the sum of the globus pallidus (GP) activity. The error signal
converges to zero. Reproduced from Berns and Sejnowski (1998) figure 6b.

4.1. REPRODUCING THE MODEL OF BERNS AND SEJNOWSKI 39

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

timestep

Figure 4.7: Error value distribution (reimplemented). The error signal is
calculated by equation 3.7 on page 25 as in figure 4.6 on the preceding page. The
error signal does not converge to 0, but to 3.

4.1.4 Reward

Berns and Sejnowski (1998) defines the reward for the model as the sum of the GP

activities, being proportional to how well the GP matched the inverse of the STR

activity. The reward can be seen as the saturation level of the non-selected GP units.

As figure 4.2 on page 34 showed, after learning the non-selected GP units were fully

active, so that the total reward converges to 4. This is true both for the original reward

plot (Berns and Sejnowski, 1998, fig. 6a) and in the reimplementation, and so the reward

plot for the reimplementation is not included here.

4.1.5 Playback

The original work reports that the model is able to playback the sequence learned. This

playback is ‘hinted’ by inputting a single item of the sequence into the striatum, and

then the network plays back the rest of the sequence. This is achieved because of the

GP -STN -GP loop.

In the reimplementation, this features was not reproducable. While the model was

40 CHAPTER 4. EXPERIMENTAL RESULTS

to reproduce the looping sequence 0, 1, 2, 3, 1, 4, 0, 1, 2, 3, 1, 4, the reimplementation re-

turned for example 0, 1, 1, 0, 2, 4, 0, 1, 1, or 0, 1, 0, 1, 0, 1, 2, 3, but not even looping. The

outcome seems to rely on the random noise and not the learned weights. Without noise,

the output didn’t change much between timesteps.

Several attempts were made to try to reproduce the playback, but with no success.

It was concluded that due to several mechanism being wrongly described by the original

work, such as the error function or the leaky integrator, it was difficult to fix the model.

One reason for why the reproducability does not work is that the network is trained

with a STN inhibiting the GP neurons with a factor 10. During playback, this inhibition

is lacking. As active GP units inhibit corresponding STN units, the ‘selected’ STN

unit will not be active enough compared to the conditions under training.

4.2 Refinements

While attempting to reproduce the results of Berns and Sejnowski (1998), and for testing

the robustness of the model, several parameters and techniques were varied in exper-

iments. This section covers the details of how the implementation was refined and

clarified.

4.2.1 Noise

In Berns and Sejnowski (1998), pre-synaptic noise drawn from a uniform distribution

is added when calculating the GP potential. It is not clear from the paper what this

means or what is its purpose. The magnitude of random synaptic noise η is said to be

0.5.

Several questions can be raised about Berns and Sejnowski’s use of noise:

1. What is the effect and reason for adding noise to the system?

2. Is the noise time-variant or fixed at initialization?

3. What does it mean that the “magnitude” is 0.5? From which uniform distribution

are the noise values drawn?

In robotic simulations, it is common to add noise to inputs to simulate the noise

added by real sensors, to make the model robust for transferring to a real robot. This

view is not explicitly explained in Berns and Sejnowski (1998), and the original work

4.2. REFINEMENTS 41

only applies noise to the GP calculations. One can assume that it would be equally

important to add noise to the STR inputs, which is binary 0.0 or 1.0.

By including the noise in only the GP calculations, the original works does not add

noise to the error calculation or weight changes (both depend on STR inputs), but these

calcuations do include the GP output, and therefore indirectly include noise.

It has been observed that adding noise can help search algorithms escape local min-

imas (Selman et al., 1994). This is also a valid reason for including noise, as the model

is to find the correct weights, and the Hebbian learning network can be said to perform

a local search.

Berns and Sejnowski use the notation ηi, the noise is made dependent on the GP unit

i. This suggest that the noise is fixed by initialization per GP unit. In the reproduced

experiments, this was achieved by generating a list of randomly chosen numbers at the

time of initialization, one number for each GP unit.

However, this made results from the playback testing to be highly dependent on the

initial chosen noise. For instance, when trying to playback of the sequence 0, 1, 2, 3, 1, 4

(a zero-based version of the Berns and Sejnowski sequence), some runs reproduced

0, 1, 2, 3, 3, 3, . . ., while other runs got stuck as early as 0, 1, 1, 1, . . .

In figure 4.8 on the next page the error value as calculated by equation 3.7 on page 25

is plotted for three different instances. Each instance is started with different randomly

chosen noise levels that are kept constant through all time steps, but unique per GP

unit. Noise values are chosen randomly from a uniform distribution (0.0, 0.5). The

model seems to be able to compensate for the error introduced by this noise after about

40 time steps, after that point there is not any noticeable difference between the error

values of the different instances.

The reason for applying noise in this fixed manner is not clear. It is interesting to

note that the model is able to compensate for the constant noise, but the relevance of

this can be discussed. It is possible that adding this constant noise can make it easier

for the model to differentiate between different GP units so to avoid fluctuations in the

Hebbian learning.

To test this, the experiments was repeated without any noise. The tests revealed the

fact that having only positive noise levels uniformly distributed in the interval (0.0, 0.5)

effectively is a positive bias to the GP units with an average of 0.25. This makes it

relatively easy for the model to achieve the desired GP state of approaching 1.0 for

inhibited passive actions.

However, the floor at ∼ 0.0 for selected (disinhibited) actions seems unaffected by

the bias during learning, due to the striatum-GP connection being enhanced by a factor

42 CHAPTER 4. EXPERIMENTAL RESULTS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50

E
rr

or

Timestep

Instance 1
Instance 2
Instance 3

Figure 4.8: Error values with three different instances of random noise. Each
instance of the model is initialised with random noise per globus pallidus (GP) unit
that are constant throughout the simulation. The error of the the different instances
is at first notably different, but after about 40 time steps, the differences in error
levels are not noticeable.

4.2. REFINEMENTS 43

α = 10, as shown in equation 3.6 on page 25. This scaling factor, named relative effect

of an inhibitory synapse to an excitatory one, is left unexplained in Berns and Sejnowski

(1998), but in effect it will make an active STR unit always inhibit the corresponding

GP unit. Weights are constrained to a maximum of 1.0, and there are 10 STN units in

the experiments with a sequence of 5 different actions, the STN units will never alone

be able to activate a GP unit under inhibition by striatum.

Figure 4.9 on the following page shows the firing rate of a GP unit without noise,

two instances with randomly chosen constant noise, and an instance where the bias is

fixed at 1.0. This figure shows that instances with a fixed positive noise climbs much

faster to the desired inhibiting GP state than the noiseless instance. However, this

effect is not due to some hidden features of the ‘random’ noise, but simply due to the

positive bias, as proven by the instantly near perfect results of the GP unit with a fixed

bias of 1.0. In fact, if experiments are repeated with constant noise chosen from the

interval (−0.25, 0.25) instead, GP units with negative noise will perform worse than the

noiseless version.

However, such noise is random throughout the simulation and not fixed at the point

of initialization. Thus, the noise is dependent on both the time and GP unit, which can

be denoted as ηi(t).

From the experimental results described above, it was deduced that if noise is to be

of any use in the model, it has to be random over time, and it should be both negative

and positive. The effect of noise that is only positive is equivalent to GP neurons having

a positive bias. Although the use of a positive bias in this context does seem to give

some interesting effects, it is hardly needed to use noise to achieve this.

It is similarly interesting to note that the model is able to compensate for the constant

noise over ∼ 40 time steps, but the constant noise does not seem to add any other

valuable effects for the system.

When observing weight changes and comparing noiseless instances with the constant

random noise instances, there are no noticeable differences except for changes imposed

by the bias.

If the noise is to be both positive and negative, centered about 0, and with a magni-

tude of 0.5, the uniform distribution must be of the interval (−0.25, 0.25)

4.2.2 Leaky integrators with sigmoidal updates

Berns and Sejnowski (1998) apply the sigmoidal activation function 3.3 on page 24.

What is special is the way the activation function is applied compared to normal usage of

44 CHAPTER 4. EXPERIMENTAL RESULTS

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100

G
P

 fi
rin

g
ra

te

Timestep

without noise
w/noise #1
w/noise #2

fixed bias=1

Figure 4.9: Firing rate of globus pallidus unit with and without constant noise.
globus pallidus (GP) units with constant random positive noise achieve better results
than a unit without noise. However, this is due to the positive bias, as shown by
the better performing unit with a fixed bias of 1.0. Not shown: firing rates near 0.0
when inhibited by striatum (STR).

4.2. REFINEMENTS 45

continuous-time recurrent neural networks (CTRNN) (Beer, 1995; Blynel and Floreano,

2002; Di Paolo, 2003). As pointed out in section 3.4.2 on page 21, Berns and Sejnowski

use the result of the transfer function also to update the internal state of the STN

neurons. This internal state, usually a representation of the neuron membrane potential,

is therefore said to be equal to the output of the neuron, the firing rate.

As shown in the discrete update rule in equation 3.5 on page 24, the sigmoid function

is applied several times, as simplified in:

B(s) = σ (αB(s− 1) + β) (4.1)

B(s + 1) = σ (ασ (αB(s− 1) + β) + β) (4.2)

To investigate the effect of using an iterative sigmoidal update rule, two different rules

were applied in a Octave (Murphy, 1997) simulation, a function u(t) representing the

normal leaky integrator potential, while function v(t) represents the sigmoidal update

rule as in Berns and Sejnowski:

u(t) = u(t− 1) +
1

τ

(
− u(t− 1) + I(t)

)
(4.3)

v(t) = σ

(
v(t− 1) +

1

τ

(
− v(t− 1) + I(t)

))
(4.4)

where τ is the time constant, σ the sigmoid function 3.3 on page 24 with parameters

gain γ = 4 and bias β = 0.1 as in Berns and Sejnowski (1998). The implicit time step

is set to 1 second, and so the time constant is set to τ = 9, as a scaled up version of

the slow STN suggested by Berns and Sejnowski where τ = 90ms and ∆t = 10ms. The

input I(t) is zero except in time step 10 and 17 . . . 22, thus representing one short and

one long signal.

As shown in figure 4.10 on the next page, and discussed in section 2.4 on page 14,

the normal potential u(t) develops in a negative exponential way towards the current

input. Thus, the longer the input, the closer the potential gets to the input voltage.

The sigmoidal transfer function applied as σ(u(t)) normalises the neural output to

be in the range (0, 1), but the bias β = 0.1 shifts the neutral output to 0.4 instead of 0.5.

Other than that, the sigmoid output almost exactly traces the membrane potential. In

fact, if u(t) is shifted with +0.4, the two graphs will overlap except for the top around

t = 23.

However, for the case of the incrementally applied sigmoidal rule v(t), as described

46 CHAPTER 4. EXPERIMENTAL RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

vo
lta

ge

time

input
u(t)

sigmoid(u(t))
v(t)

Figure 4.10: Effect of sigmoidal update rule on continuous-time recurrent neural
network (CTRNN) neurons. u(t) represents the membrane potential reacting
to the input, as described by equation 4.3 on the preceding page. sigmoid(u(t))
shows the neural output after applying the sigmoid transfer function 3.3 on page 24
to u(t). v(t) pictures the membrane potential and neuron output as described by
equation 4.4 on the preceding page, where the sigmoid function is part of the update
rule.

4.2. REFINEMENTS 47

by equation 4.4 on page 45, is very different. As shown for t = 2, the new value is

calculated as σ(0) ≈ 0.4, and will in further time steps increase towards ∼ 0.97, even

before any inputs are present.

As shown in the close-up of v(t) in figure ?? on page ??, the potential is not changed

significantly by an input of 1.0, and the sigmoidal update rule seems to not make much

difference on the input duration. The first input signal lasting a single time step at

t = 10 is not able to raise the potential as high as the longer signal at t = 17 . . . 22.

However, the potential charge flats out after about 3 time steps. The same is true for

the decays, after 3 time steps the decay is not noticeable, this is true for both the short

and long signal.

When comparing this to the output of update rule 4.3 on page 45, the decay rate is

considerably faster for the incrementally sigmoid update rule 4.4 on page 45. The decay

of the potential u(t) is shown to be reduced by half from t = 22 to t = 28 in figure 4.10

on the preceding page. For the activation function sigmoid(u(t)) the output is decayed

by half from t = 22 to t = 28 if we assume ∼ 0.4 as the floor. Thus, the rate of halving

is about 6 time steps. However, the incremental update rule decays by over 80% in

just one time step, when assuming the floor of about ∼ 0.952. In effect the incremental

sigmoidal update rule shifts the time constant closer to 1.

The effect of the time constant can be said to delay the decaying of the signal and

smooth the signal over time, thus providing an eligibility trace. When applying the

incremental sigmoidal update rule as done in Berns and Sejnowski (1998), this delay

effect is largely reduced, and makes it questionable why Berns and Sejnowski uses the

leaky integrator with short and long time constants, but destroy the delay effect by

applying the sigmoidal transfer function to the membrane potential.

Repeating the experiment with a lower time constant τ = 0.7 revealed dampened os-

cillations as the input changed state. This is expected, as the time constant is lower than

the time step, but not as low as half the time step, where the system becomes numeri-

cally unstable (Blynel and Floreano, 2002). The integrator tends to over-compensate the

changed input, and this creates the oscillations. However, with time constants less than

1, v(t) seems to be more stable than sigmoid(u(t)), as the integrated sigmoid method

gives the effect of a time constant closer to 1 and dampens the oscillations.

48 CHAPTER 4. EXPERIMENTAL RESULTS

4.3 Implementing a CTRNN

For supporting modelling basal ganglia using leaky integrators, a CTRNN library was

implemented in Python. This library supports complex networks through a simplified

API. A simple network is constructed by specifying the number of neurons, and various

features such as the bias, time constants, transfer function and weights can be modified

per neuron by using array indexing:

net = ctrnn.CTRNN(5)

net.bias[0] = 0.4

net.timeconst[3] = 1.4

net.transfer[1] = ctrnn.step

Network evaluations are performed using matrix operations of the library NumPy

(Oliphant). The network can be considered as a set of vectors and matrices, and so

setting the weights for all connections originating from neuron 4 can be achieved as:

for n in range(5):

net.weight[4,n] = -1.5

The library supports a concept called layers. Unlike in feed-forward network, calcu-

lations on fully recurrent networks are not performed layer by layer, as any neuron can

be connected to any other neuron, but for the whole network at once. The concept of a

layer is still useful for addressing common properties.

In the developed library, layers are supported as a way of constructing a network.

Instead of specifying the total number of layers, a network is constructed by building

layers of different sizes. The underlying CTRNN network is built as normal, and the

layers are presented to the programmer as slices of the network.

The code below shows how to use the library for a simple feed-forward network:

layers = ctrnn.Layers()

layers.add_input_layer("input", 3)

layers.add_layer("hidden", 6)

layers.add_layer("output", 2)

layers.build_net()

net = layers.net

Connect input->hidden->output

for hidden in layers.hidden:

for input in layers.input:

net.weight[input,hidden] = random.random()

for output in layers.output:

net.weight[hidden,output] = random.random()

layers.input.set_inputs([0.4, 0.3, 0.9])

4.4. REPRODUCING THE MODEL OF PRESCOTT ET AL. 49

net.calc_timestep()

net.calc_timestep()

print layers.output.output

array([0.89475212, 0.88843912])

Although a CTRNN with all time constants set to 1 and no recurrent connection can

be used as a feed forward network, the user will have to calculate as many time steps as

the depth of the network for the signals to propagate.

The library was used to reimplement the models of Berns and Sejnowski and Prescott

et al.. However, as the simple reimplementation of Berns and Sejnowski (1998) failed to

reproduce key features of the model, the full CTRNN model is not examined further in

this text.

4.4 Reproducing the model of Prescott et al.

Prescott et al. (2006), as presented in section 3.4.3 on page 26, show a rather complex

basal ganglia model, embodied in a robot to perform live action selection.

The developed CTRNN library, as described in 4.3 on the preceding page, was

applied to attempt an reimplemention of the model described in the original work. The

full network was successfully deducted from the equations provided.

4.4.1 Transfer function

A piercewise, linear transfer function is applied in the original work and is expressed as:

y = L(a, θ) =


0, a > θ

(a− θ), θ ≤ a ≤ 1/(1 + θ)

1, a > (1 + θ)

When expressed as code, an bug is immediately evident:

def piecewise(a, theta):

if a < theta:

return 0.0

if a <= 1.0/(1.0+theta):

return a-theta

if a > (1+theta):

return 1

logging.warning("Unknown piecewise value %s", a)

return 1

50 CHAPTER 4. EXPERIMENTAL RESULTS

The conditions set up do not cover all possible a values, because there could be a

gap between 1/(1 + θ) and 1 + θ. In addition, there is no guarantee that the value is

bounded to (0, 1) as expected by transfer functions.

>>> print prescott.piecewise(0.45, 0.5)

0.0

>>> print prescott.piecewise(0.59, 0.5)

0.09

>>> print prescott.piecewise(0.66, 0.5)

0.16

>>> print prescott.piecewise(0.67, 0.5)

WARNING:root:Unknown piecewise value 0.67

1

In addition, notice how the piecewise transfer function in this case will immediately

jump from 0.16 to 1.0. When examining results for a negative θ = −0.9 as used in the

original paper, the transfer function will output values up to 10.9 before going for the

‘upper’ bound of 1.0:

>>> print prescott.piecewise(-0.85, -0.9)

0.05

>>> print prescott.piecewise(10, -0.9)

10.9

>>> print prescott.piecewise(10.1, -0.9)

1

It is evident that the authors did not use this function. The function they used has

probably returned a− θ, but restricted to the range (0, 1). If the authors had presented

the function using programming code this could have be done as:

def piecewise(a, theta):

return max(1.0, min(0.0, a-theta))

4.4.2 Performing action selection

In the embedded version of the model, the robot runs in a sense-act cycle at 7 Hz. The

authors did not want to run the basal ganglia with such large time steps. Instead of

selecting a specific mapping between the two time steps, the original work runs the basal

ganglia model to convergence at each robot time step.

This means that the network is evaluated until the smallest ∆a on two consecutive

time-steps was less than 0.0001 (Prescott et al., 2006). ∆ai is the change in the leaky

integration update rule. In the reimplementation, this statement was considered to

4.4. REPRODUCING THE MODEL OF PRESCOTT ET AL. 51

mean the largest ∆a, as a network can be unstable even if a single output is stable. This

functionallity was provided by the developed CTRNN library.

The original work tested the model’s ability to perform action selection offline from

the robot. This was achieved by using 5 different action channels, meaning 5 units at

each layer STN , GP , etc. Salience inputs were provided to the somatosensory cortex

(SSC) as vectors (s1, s2, 0, 0, 0), where s1 and s2 were varied in each run.

Then the model was tested with increasing s1 values from 0.0 to 1.0, and for each s1

value testing with increasing s2 values from 0.0 to 1.0. Both values were incremented in

steps of 0.01. This algorithm can be expressed as:

for s1 in xrange(100):

s1 /= 100.0

self.net.output[:] = [0.0]*len(self.net.output)

for s2 in xrange(100):

s2 /= 100.0

inputs = [s1, s2, 0.0, 0.0, 0.0]

self.ssc.set_inputs(inputs)

self.step()

What is to be achieved is that s1 should be the only selected action in the output

of the system, even as s2 increases. In the original work, the model manages to do this

even as s2 is slightly stronger than s1. At a point, s2 becomes the new selected action,

and s1 is fully depressed.

The reimplementation using the CTRNN library fully confirmed this behaviour.

52 CHAPTER 4. EXPERIMENTAL RESULTS

Chapter 5

Conclusion

This chapter reviews what has been achieved in this work. A discussion first describes

how the basal ganglia can be compared to an actor-critic performing temporal difference

learning. Following that, the implications of reproducing the original work are detailed.

A note on implementing scientific prototypes describes how different programming

languages affect the outcome and how using mathematics instead of program code in

scientific publications affects reproducibility.

The chapter closes with a summary of possible future work.

5.1 Summary

The computational model of basal ganglia as described by Berns and Sejnowski (1998)

was reimplemented. The model was trained with a looping, simple sequence; it learned

the weights predicting the sequence, and produced outputs as expected during training.

However, it was not possible to reproduce the playback behaviour as described by Berns

and Sejnowski. Several possible flaws in the original work were identified and analyzed.

5.2 Discussion

5.2.1 Basal ganglia as a TD-learning actor-critic

The human brain nuclei basal ganglia, as detailed in section 2.3 on page 7, can be

described as an actor-critic architecture. Although the functional role of basal ganglia

in vivo is not yet fully understood, it has been credited with motor control and action

selection. The primary basal ganglia output layer, globus pallidus (GP), projects to the

53

54 CHAPTER 5. CONCLUSION

thalamus, inhibiting motor control signals that would otherwise have been sent out from

thalamus.

The basal ganglia receives inputs from the cortex to the striatum, and thus can be

said to monitor the overall picture of the current context and state. Based on the current

and earlier contexts, the basal ganglia inhibits selected GP units, effectively allowing

selected motor control signals to pass through the thalamus. Thus the basal ganglia can

be viewed as performing action selection.

The actor-critic architecture as described in section 2.1.1 on page 4 consists of an

actor that performs actions on the environment, based on the context and reinforcement

signals from the critic, who judges the actor’s decision.

The model of Berns and Sejnowski mimics pathways in basal ganglia as described by

neurology literature, but simplifies some structures. Their model can be compared to

the actor-critic, assigning the actor role to the structures GP and subthalamic nucleus

(STN), while the substantia nigra pars compacta (SNc) plays the role of the critic. The

reinforcement signal modifies the weights of the STN-GP connections so that the basal

ganglia output (the selected action in the GP) more closely matches the striatum (STR)

context.

The critic can be said to provide the TD error signal as in temporal difference learn-

ing, described in section 2.2.2 on page 6. In TD-learning, the solution to the temporal

credit assignment problem is to observe the difference between the system’s own pre-

dictions over time. This can be compared to the ‘internal’ reward as observed in basal

ganglia and classical conditioning experiments showing increased dopamine levels at the

learned conditioned stimulus (CS).

In view of the Berns and Sejnowski (1998) model, this internal reward is given by the

SNc calculated error, and used by the Hebbian learning rule to adjust weights. If we

assume the in vivo basal ganglia does something similar, the observed dopamine release

is an indicator that the basal ganglia performs temporal difference learning.

5.2.2 Reproducing Berns and Sejnowski

This work shows experiments with reimplementing the work of Berns and Sejnowski

to be able to reproduce sequences in a basal ganglia inspired artificial neural network.

The reimplementation was not as straight-forward as expected, as the model turned

out to be inaccurately or possibly incorrectly described in Berns and Sejnowski (1998).

The original work describes playback features that were not reproducible, as shown in

section 4.1.5 on page 39.

5.2. DISCUSSION 55

Experiments revealed that Berns and Sejnowski have incorrectly described the error

function as calculated by SNc . However, the reimplementation still managed to learn

the weights predicting the sequence in a similar way to the original work. This suggests

that the error term might not have been as important for Hebbian learning as the pre-

and post-synaptic activity.

In the original work, noise was added to the system. In reproducing, the noise was

first assumed to be positive and static in time. Results show that applying noise in this

way is equivalent to fixed biases. A fixed bias of 1.0 to the GP units puts the output

close to the desired full saturation when not inhibited by the striatum, and one could

argue that the system is really taught to always activate all GP units, but that by

design, it would not be possible to override the α = 10 scaled inhibitions to the selected

GP unit.

Berns and Sejnowski use a leaky integrator, as in CTRNN architectures. However,

their version is slightly different than the usage normally reported in CTRNN literature.

Experiments show that by setting the neuron potential to the firing rate, as in the

update rule of the original work, the neuron behaves as if it is tonically firing, achieving

an output of almost full saturation even without any inputs.

It has been shown in literature that inhibiting neurons in basal ganglia are tonically

active, however this would apply to the STR and GP units, and not the excitatory

STN units. Berns and Sejnowski mention that globus pallidus internal (GPi) is tonically

active, but this is not reflected in their implementation unless considering the positive

noise.

Neurons implementing the sigmoidal update rule, applied in the original work to the

STN units, are hardly affected by inputs, except by applying large negative signals,

such as with the −10 signal from STR to GP . This gives a reason for why Berns and

Sejnowski have applied this relative strong inhibiting scaling factor, to compensate for

their sigmoidal leaky integrators’ small response.

Experiments also showed that using a sigmoidal leaky integrator will work as a damp-

ener on the effect of the time constant. This means that the eligibility traces of the“slow”

STN units are reduced to only a few time steps. However, for learning a very short

sequence, it is reasonable that the STN units should not have short-term memory last-

ing much longer, because otherwise it would overlap with the looping of the sequence.

A simpler way to achieve this with normal continuous-time recurrent neural network

(CTRNN) neurons would be to use smaller time constants.

A reduced time constant could explain the lack of reproducable playback, as reported

in section 4.1.5 on page 39.

56 CHAPTER 5. CONCLUSION

5.2.3 Issues with reproducing experiments

It was concluded that prototyping scientific experiments in a strongly typed and low-level

language as C++ was inefficient. In a prototyping context, the importance of designing

proper software interfaces is fairly low compared to the ease of changing implementations,

logging and debugging.

In comparison with C++, the programming language Python proved to be a far more

productive choice, giving freedom to experiment with the prototypes and moving focus to

the model to be implemented instead of the interfaces to design. However, it might still

be feasible to do a back-port from Python to C or C++ for a high-performance version

of the most critical parts of the model. This is in fact a technique often used by Python

developers. By using the matrix operational library annie, most heavy calculations will

already be optimised.

It was realised that even though a paper provides equations for all parts of their

model, the equations might not be correct. In Berns and Sejnowski (1998), this is most

likely due to faults introduced in “back-porting” from the programming language version

of the model (that produced the results) to equations to be included in the paper.

When again porting from those equations to code in attempts to reproduce the

original work, new errors can be introduced, and faults in the equations themselves are

revealed. Although it is possible, to a great extent, to analyze the different errors, as in

this work, this does not guarantee that the original results can be reproduced.

It is the view of this author that the computer science community has an tendency

for preferring mathematics in papers even when a source code extract could provide

a better explanation, be more understandable and known to be correct. The lack of

included source code leads to incomplete publications that can be hard or impossible to

reproduce. This problem is, to a great extent, more present in computer science than in

other sciences.

For instance in biomedical research, it is much more common to include technical

details such as apparatuses used and amounts of different chemicals applied. These

details are invaluable when reproducing results.

In computer science, the norm is to transcribe everything as abstract mathematics,

and never include details such as constants or ‘hacks’ that were invaluable in making the

experiments work. This is probably partly a legacy from computer science breaking out

of the mathematical sciences, and is described as ‘generalising’. It is this author’s belief

that in many computer science papers, the general mathematics is often derived from

the experimental source code, but the reverse process is seldom tested, and so there is

5.3. FUTURE WORK 57

no guarantee that the ‘generalised’ equations even covers the source used in the reported

experiments.

5.3 Future work

Several issues could be a topic for future work. Generally, the usage of non-tested

equations in computer science literature should be analysed and addressed.

Basal ganglia models are diverse and don’t seem to have a common goal. The problem

is to approach the neuroscience literature, but computer scientists also seem to want to

include all techniques learned from machine learning. Although this inspiration has

proven fruitful and has given valuable insight, it is clear that at some point one should

let go of the computer science and make the model approximate real data.

In the basal ganglia literature, there are even suggested models that have never

been evaluated. Researchers in computer science should take reproducibility as serious

as other sciences, and this requires published work to include the neccessary technical

details.

For the models investigated in this work, one could research futher if the peculiarities

of Berns and Sejnowski (1998) unintentionally did provide some insight into basal ganglia

behaviour or sequence learning. As shown in this work, methods described and results

reported in the original work don’t match up, so further work could try to solve the

ambiguities.

The model of Prescott et al. (2006) seems promising, and should be a subject for

futher research. Implementing learning and the dopamine system in this model could

yield great results.

58 CHAPTER 5. CONCLUSION

Appendix A

Source code

This appendix includes source code used in this work. This code is also available on

request1, and is released under the GPL license2.

The source code included is:

Berns and Sejnowski in Python The direct implementation of Berns and Sejnowski

(1998) producing most of the results discussed in 4.1 on page 33

CTRNN library for Python A general library for continuous-time recurrent neural

network (CTRNN) developed

Berns and Sejnowski using CTRNN Applying the CTRNN library for implement-

ing Berns and Sejnowski (1998)

Prescott et al. (2006) using CTRNN Applying the CTRNN library for implement-

ing Prescott et al. (2006)

This source code is not included:

• The early C++ model, as described in 3.5.1 on page 28, as it is incomplete

and did not produce any valuable results.

• Variations of Berns and Sejnowski implementation for testing noise, error

functions, etc

• Octave simulations producing figures 2.9 on page 15 and 4.10 on page 46

• Octave source for producing the other result graphs

1http://soiland.no/master
2http://www.gnu.org/copyleft/gpl.html

59

60 APPENDIX A. SOURCE CODE

A.1 Berns and Sejnowski in Python

This program directly implements the equations of Berns and Sejnowski (1998) and tests

the basal ganglia model on the sequence 0, 1, 2, 3, 1, 4. The main flow of the program is:

• Train the network by looping over the sequence for a total of 200 time steps:

– Advance the sequence for each time step, and activate only the striatum

inputs corresponding to the current sequence number

– Calculate one time step, layer by layer:

1. subthalamic nucleus (STN)

2. globus pallidus (GP)

3. substantia nigra pars compacta (SNc) (error)

4. Modify weights from STN to GP

5. Modify weights from striatum to SNc

6. Log all weights and neuron outputs

– Pick the lowest outputting globus pallidus (GP) unit as the model’s guess and

log

• Reset the network potentials

• Hint the network by stepping through the first item of the sequence to be played

back.

• Step through the network for 20 trial steps with no inputs

#!/usr/bin/env python

- encoding: utf8

#

Copyright (c) 2005-2006 Stian Soiland

#

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

#

A.1. BERNS AND SEJNOWSKI IN PYTHON 61

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#

Author: Stian Soiland <stian@soiland.no>

URL: http://soiland.no/i/src/

License: MIT

#

"""Basal ganglia model as of Berns & Sejnowski 1998.

This model (re)implements the simulations as described by [1] by almost

directly mapping the equations to functions.

[1] Berns, G & Sejnowski, T - A computational model of how the basal

ganglia produce sequences - Journal of cognitive neuroscience 10:1 pp.

108-121

"""

import sys

import math

import random

import itertools

Write stuff to screen

DEBUG=2

Log stuff to *txt

LOG=1

def constrain(x, min, max):

"""Ensure x is within limits"""

if x > max: return max

elif x < min: return min

return x

def _print_nums(file, nums):

62 APPENDIX A. SOURCE CODE

"""Print list of numbers space-seperated to a file object"""

nums = map(str, nums)

print >>file, " ".join(nums)

class Berns:

def __init__(self):

"the sequence (1,2,3,4,2,5)"

self.seq = [0,1,2,3,1,4]

"was learned using 5 units"

self.inputs = max(self.seq)+1

As suggested by figure 4, learning is achieved by 200

timesteps

self.trainsteps = 200

As suggested by figure 7, only hint 1 timestep

self.hintsteps = 1

timesteps for trials after hint

self.trialsteps = 20

From p119 (methods):

"All weights were constrained to the range 0 to 1"

self.min_v = 0.0

self.min_w = 0.0

self.max_v = 1.0

self.max_w = 1.0

lambdas, converted STN timeconsts as by eq 3

self.long = 0.9 # 90 msec

self.short = 0.4 # 7 msec

As by table 2

self.gain = 4.0

self.bias = 0.1

alpha: "relative effect of an inhibitory synapse to an

exitatory one"

self.effect = 10

learning rates

self.w_learning = 0.05

self.v_learning = 0.01

"magnitude of random synaptic noise"

self.noiselevel = 0.5

/table2

"Beginning at a state in which the weights were all

zero" (and calc_v_change() gives positive changes, so v

should grow)

self.v = [0.0 for x in range(self.inputs)]

self.w = {}

A.1. BERNS AND SEJNOWSKI IN PYTHON 63

for i in range(self.inputs):

for j in range(self.inputs*2):

Initially 0, as suggested by figure 5, and by p118:

"Beginning at a state in which the weights were all

zero"

self.w[i,j] = 0.0

Set initial outputs to 0 as by Figure 7 STN Short t=1

self.reset()

if LOG:

Each file has numbers seperated by space, one line for

each timestep

Neural outputs

self.f_STR = open("STR.txt", "w")

self.f_GP = open("GP.txt", "w")

self.f_STN_s = open("STN_s.txt", "w")

self.f_STN_l = open("STN_l.txt", "w")

Weights

self.f_W = open("W.txt", "w")

self.f_V = open("V.txt", "w")

trained and guessed value

self.f_ACTION = open("ACTION.txt", "w")

Error

self.f_ERROR = open("E.txt", "w")

def reset(self):

Reset before testing.. current outputs are set to zero.

self.STR = [0.0] * self.inputs

self.GP = [0.0] * self.inputs

self.STN = [0.0] * self.inputs*2

self.error = 0.0

eq 2 subthalamic

def calc_STN(self, i):

Determine time constant by odd or even index

if i % 2:

lambd = self.long # slow / odd index (n*2 + 1)

else:

lambd = self.short # fast / even index (n*2)

leaky integrator in discrete time

Corresponding GP unit is i/2.. so that

STN 0, STN 1 <-- GP 0

64 APPENDIX A. SOURCE CODE

STN 2, STN 3 <-- GP 1

etc.

Both STN[i] and GP[i/2] will be from the previous timestep (ie

G(t-n) where n=1) because calc_STN() is called before

calc_GP(), and the results are not pushed back to STN before

after calc-ing.

return self.sigmoid(lambd * self.STN[i] -

(1-lambd) * self.effect * self.GP[i/2])

eq 3 (not used)

time(0.007) -> 0.4 (7 msec)

time(0.09) -> 0.9 (90 msec)

#def time(timeconst, length_timestep=0.01):

10 ms timesteps

return timeconst / (timeconst+length_timestep)

self.long == self.time(0.09) # 0.9 == 90 msec

self.short == self.time(0.007) # 0.4 == 7 msec

eq 4 transfer function

def sigmoid(self, x):

return 1.0 / (1.0 + math.exp(-self.gain * (x-self.bias)))

eq 5 globus pallidus

def calc_GP(self, i):

sum = 0.0

for j in range(self.inputs*2):

Note: w[i,j] means from j to i!

sum += self.w[i,j]*self.STN[j]

"Noise drawn from a uniform distribution"

(We’ll assume this means a distribution centered around 0 with

width 0.5, thereby a uniformly drawn random number between

-0.25 and 0.25)

noise = random.uniform(-self.noiselevel/2, self.noiselevel/2)

result = sum - self.effect * self.STR[i] + noise

return self.sigmoid(result)

eq 6

def calc_w_change(self, i,j):

"""Calculate weight change for STN(j) to GP(i)"""

r = self.w_learning * (self.error * self.GP[i] - self.STR[i]) * \

self.STN[j]

#print r,

return r

A.1. BERNS AND SEJNOWSKI IN PYTHON 65

eq 7 error / SNc

def calc_error(self):

"""Calculate value for SNc, the error"""

sum = 0.0

for i in range(self.inputs):

sum += self.GP[i]

sum -= self.v[i]* self.STR[i]

if LOG:

print >>self.f_ERROR, sum,

return sum

eq 8

def calc_v_change(self, i):

"""Calculate weight change for STR(i) to SNc"""

return self.v_learning * self.error * self.STR[i]

def step(self, input=None):

1. Set STR input vector (if provided)

if input:

assert len(input) == self.inputs

self.STR = input

2. Calculate STN (using STN and GP values from prev. timestep)

temp_STN = []

for j in range(self.inputs*2):

temp_STN.append(self.calc_STN(j))

self.STN = temp_STN

3. Calculate GP (using current STN and STR values)

for i in range(self.inputs):

self.GP[i] = self.calc_GP(i)

4. Calculate error (using current STR and GP values)

self.error = self.calc_error()

for i in range(self.inputs):

5. Change weights STN(j)->GP(i)

for j in range(self.inputs*2):

Note: w[i,j] means from j to i!

self.w[i,j] += self.calc_w_change(i,j)

self.w[i,j] = constrain(self.w[i,j], self.min_w, self.max_w)

6. Change weights GP(i)->SNc(i)

self.v[i] += self.calc_v_change(i)

self.v[i] = constrain(self.v[i], self.min_v, self.max_v)

7. Log all outputs and weights

self.log()

66 APPENDIX A. SOURCE CODE

def train(self):

for x in range(self.trainsteps/len(self.seq)):

for number in self.seq:

Make input vector

input=[0.0]*self.inputs

input[number] = 1.0

self.step(input)

The network’s guess is the lowest firing GP

guess = self.GP.index(min(self.GP))

if DEBUG>1:

print number, guess, self.GP, "e=%s" % self.error

if LOG:

print >>self.f_ACTION, number, guess

def log(self):

if not LOG:

return

_print_nums(self.f_STR, self.STR)

_print_nums(self.f_GP, self.GP)

_print_nums(self.f_STN_l, [elem for n,elem in enumerate(self.STN) if n%2])

_print_nums(self.f_STN_s, [elem for n,elem in enumerate(self.STN) if not n

%2])

_print_nums(self.f_V, self.v)

W = self.w.items()

W.sort()

_print_nums(self.f_W, [weight for _,weight in W])

def test(self):

self.reset()

seq = itertools.cycle(self.seq)

for hint in itertools.islice(seq, self.hintsteps):

input=[0.0]*self.inputs

input[hint] = 1.0

self.step(input)

guess = self.GP.index(min(self.GP))

if DEBUG:

print hint, guess, self.GP, "e=%s" % self.error

if LOG:

print >>self.f_ACTION, hint, guess

if DEBUG:

print "--finished hints"

A.1. BERNS AND SEJNOWSKI IN PYTHON 67

As suggested by Figure 7, STR is silent after hint

self.STR = [0.0]*self.inputs

correct = 0

answers = []

for answer in itertools.islice(seq, self.trialsteps):

self.step()

guess = self.GP.index(min(self.GP))

answers.append(guess)

if DEBUG:

print answer, guess, self.GP, "e=%s" % self.error

if LOG:

print >>self.f_ACTION, answer, guess

correct += guess==answer

return correct, answers

if __name__ == "__main__":

if sys.argv[1:]:

random.seed(sys.argv[1])

berns = Berns()

berns.train()

print "---- Testing ----"

berns.test()

68 APPENDIX A. SOURCE CODE

A.2 CTRNN library for Python

A library for constructing and evaluating continuous-time recurrent neural network

(CTRNN) networks. Using the library NumPy (Oliphant), networks are evaluated using

matrix calculations, as described in section 3.5.1 on page 30. The network is represented

by the class CTRNN and is evaluated with the method calc_timestep(). The method

stabilize runs the network until it is considered stable, that is until the outputs do

not change considerably.

As CTRNN networks do not necessarily have the same configuration for every neu-

ron, a wrapper class Layers is included that allows accessing slices of the network.

This makes it easy to set time constants for parts of the network representing say the

subthalamic nucleus .

#!/usr/bin/env python2.4

- encoding: utf8

#

Copyright (c) 2006 Stian Soiland

#

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

#

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#

Author: Stian Soiland <stian@soiland.no>

URL: http://soiland.no/i/src/

License: MIT

#

"""Continuous time recurrent neural network.

A.2. CTRNN LIBRARY FOR PYTHON 69

"""

from math import exp, sqrt, pi, tanh

import operator

import logging

try:

import numpy

except ImportError:

Try to go old-fashioned

import Numeric as numpy

Hackish, generate IEEE 754 special values

#inf = 1e300 * 1e300

#nan = inf - inf

def identity(x):

"""Identity transfer function"""

return x

def step(x, limit=0.4):

"""Step transfer function"""

if x < limit:

return 0.0

return 1.0

def sigmoid(x, gain=1.0, bias=0.0):

"""Sigmoidal transfer function."""

try:

return 1.0 / (1.0 + exp(-gain * (x-bias)))

except OverflowError:

return 0.0

def dsigmoid(x):

"""Derivative of sigmoid()"""

f = sigmoid(x)

return f * (1-f)

def gaussian(x, mu=0.0, sigma=1.0):

"""Gaussian transfer function"""

70 APPENDIX A. SOURCE CODE

return (1 / (sqrt(2*pi) * sigma)) * exp(-0.5 * ((x-mu)/sigma) ** 2)

def dgaussian(x, *args, **kwargs):

"""Derivative of gaussian(), parameters as for gaussian()"""

return -2 * gaussian(x, *args, **kwargs) * x

def signum(x):

if x < 0.0:

return -1.0

return 1.0

The same as math.tanh

#def tansig(x):

return (2/ (1+exp(-2*x))) -1

def dtansig(x):

"""Derivative of tanh()"""

f = tanh(x)

return 1-(f**2)

def tanh_pos(x):

"""tanh with lower limit of 0.0"""

if x < 0.0:

return 0.0

return tanh(x)

class Layers(object):

"""Layers for constructing and accessing a CTRNN.

A layer is a set of neurons. A network is made of several layers.

Note that compared to feed-forward networks, there are no rules that

neurons in a layer cannot be interconnected. In addition,

timestep calculation is done globally, not per layer.

These layers can be used to group neurons into different layers for

easier access to their parameters. For instance, a network can

consist of an input layer, a hidden layer, and an output layer,

which can have different weights and time constants. Instead of

remembering that the hidden neurons are in the range 15 to 26 and

using these offsets in all code, the layer can be accessed as the

attribute "hidden".

A.2. CTRNN LIBRARY FOR PYTHON 71

Construction work by adding layers using add_layers(). When all the

layers are ready, build_net() is called. After this, no more layers

can be added, the complete CTRNN network is available as attribute

.net, and the different layers as attributes by .their_name.

Example:

layers = Layers()

layers.add_input_layer("input", 3)

layers.add_layer("hidden", 5)

layers.add_layer("output", 2)

layers.build_net()

assert len(layers.net.potential) == 3+5+2

layers.input.set_inputs((10, -5, 15))

layers.hidden.timeconst[3] = 5

layers.hidden.weight[0, 0] = 13

"""

def __init__(self):

self.layers = []

self.input_layers = set()

self.neurons = 0

self.net = None

def add_input_layer(self, name, neurons):

"""Add the input layer with the given name.

Like add_layer(), but input layers will have their transfer

function set to identity(), and their timeconstant will be 1.

"""

self.add_layer(name, neurons)

self.input_layers.add(name)

def add_layer(self, name, neurons):

if self.net:

raise "Cannot add layers after build_net()"

if hasattr(self, name):

raise AttributeError, "already exists: %s" % name

Placeholder until build_net

setattr(self, name, None)

min = self.neurons # Inclusive

self.neurons += neurons

max = min + neurons # exclusive

72 APPENDIX A. SOURCE CODE

self.layers.append((name, slice(min,max)))

def build_net(self, timeconst=1.0):

self.net = CTRNN(self.neurons, timeconst)

for (name, slice) in self.layers:

if name in self.input_layers:

layer = _InputLayer(self.net, slice)

else:

layer = _Layer(self.net, slice)

setattr(self, name, layer)

class _Layer(object):

"""Proxy access to network parameters for the given layer.

Properties such as bias, output, potential and timeconst are sliced

out to refer to the current Layer only. Note that due to the use of

numpy.array, these slices are also assignable, and changes are

reflected in the grand network.

The property ’’weight’’ is the part of the weight matrix for

connections going *to* this layer, from *all* neurons. As thus, the

matrix is sized with n rows and m columns, where n is the number of

neurons in the whole network, and m is the number of neurons in this

layer.

Examples:

Set the weight from network neuron number 14 (global indexes)

to neuron 2 in this layer.

layer.weight[14,3] = 0.7

Get global index for usage in another layer.weight

index = layer[2]

Check the output of the layer

print layer.output

Set all the biases at once (assumed layer size 4)

layer.bias[:] = [0,1,2,3]

"""

def __init__(self, net, slice):

A.2. CTRNN LIBRARY FOR PYTHON 73

self.net = net

self.slice = slice

def __len__(self):

step = self.slice.step or 1

return (self.slice.stop - self.slice.start) / step

def __getitem__(self, item):

step = self.slice.step or 1

index = item * step

if index < 0:

index = self.slice.stop + index

else:

index = self.slice.start + index

if index < self.slice.start:

raise IndexError, item

if index >= self.slice.stop:

raise IndexError, item

return index

def calc_timestep(self):

self.net.calc_timestep(self.slice)

def _slicer(self, array):

Note: This will only work for assignments if array is of

numpy.arraytype, where slices work as pointers instead of

making copied arrays

assert isinstance(array, numpy.arraytype)

return array[self.slice]

@property

def bias(self):

return self._slicer(self.net.bias)

@property

def output(self):

return self._slicer(self.net.output)

@property

def potential(self):

return self._slicer(self.net.potential)

@property

74 APPENDIX A. SOURCE CODE

def timeconst(self):

return self._slicer(self.net.timeconst)

@property

def transfer(self):

return self._slicer(self.net.transfer)

def set_transfer(self, transfer):

"""Set the transfer function for the whole layer.

"""

self.transfer[:] = [transfer] * len(self)

@property

def weight(self):

We return the weights pointing TO this neuron,

ie. where second dimension is our slice

return self.net.weight[:,self.slice]

class _InputLayer(_Layer):

def __init__(self, net, slice):

super(_InputLayer, self).__init__(net, slice)

self.fix()

FIXME: Separate the input layer from the "real" network

def fix(self):

"""Make sure there is no monkey business going on"""

self.set_transfer(identity)

self.timeconst[:] = [1.0] * len(self)

self.weight[:] = [0.0] * len(self.weight)

def set_inputs(self, inputs):

self.bias[:] = inputs

self.calc_timestep()

If this fails, you have messed up the weights, timeconstants

or transfers of this input layer.

assert (self.output == inputs).all()

class CTRNN(object):

"""Continuous time recurrent neural network.

"""

def __init__(self, neurons, timeconst=1.0, transfer=sigmoid,

A.2. CTRNN LIBRARY FOR PYTHON 75

timestep=1.0):

"""Construct a new CTRNN of the given number of neurons.

Optional parameter timeconst is the time constant for neurons,

by default 1.0. Individual time constants can later be modified

through self.timeconst.

Optional parameter transfer is the default transfer function.

Transfer functions can be set individually for each neuron by

the list self.transfer.

Optional parameter timestep is the size of the timestep

(delta T), by default 1. Note that for the network to be stable,

the timestep size must be less than double the smallest

timeconstant in the network, ie. if the smallest timeconstant is

2, the timestep must be less than 4.

"""

Prepare logging

self.log = logging.getLogger("ctrnn")

if not self.log.handlers or logging.root.handlers:

logging.basicConfig()

self.num_neurons = neurons

NOTE: All arrays are numpy.array-s - which enables

by-reference slicing

internal state, membrane potential

self.potential = numpy.zeros(neurons, numpy.Float)

Our timestep \Delta t must be smaller than twice the smallest

timeconst

self.timestep = timestep

assert 2*timeconst > timestep

By default, no bias

self.bias = numpy.zeros(neurons, numpy.Float)

self.timeconst = numpy.array([float(timeconst)] * neurons)

self.weight = numpy.array(numpy.zeros((neurons, neurons)),

numpy.Float)

self.transfer = numpy.array([transfer] * neurons)

Output values as calulated by calc_timestep()

self.output = numpy.zeros(neurons, numpy.Float)

def connect_all(self, weight=None, func=None, ref_self=False):

76 APPENDIX A. SOURCE CODE

"""Connect all neurons using the specified weight or function.

Either weight or func must be specified, but not both.

If weight is specified, it is the scalar weight assigned to all

connections.

If func is specified, it is assumed to be a function taking no

arguments. The function will be called for each connection,

and the result is assigned to the connection. No order can be

assumed, so this function is normally something like

random.random.

If ref_self is set to True, self-looping weights will also be

assigned between neuron n and neuron n, otherwise they will be

assigned 0.0.

"""

assert ((weight is None and func) or

(weight is not None and not func))

for n in range(self.num_neurons):

for m in range(self.num_neurons):

if n == m and not ref_self:

w = 0.0

elif func:

w = func()

else:

w = weight

self.weight[n,m] = w

def set_transfer(self, transfer):

"""Set the transfer function for the whole network.

"""

self.transfer[:] = [transfer] * len(self.transfer)

def calc_timestep(self, slicing=None):

"""Calculate the next timestep.

If slicing is given, it is assumed a slice object from which

neurons are to be updated. Otherwise, all neurons are updated.

"""

We do this as nice matrix operations

if not slicing:

ie. [:] - everything FIXME: Undocumented in Python

A.2. CTRNN LIBRARY FOR PYTHON 77

slicing = slice(None)

inputs = numpy.matrixmultiply(self.output,

self.weight[:,slicing])

change = self.timestep/self.timeconst[slicing] * (-self.potential[slicing]

+

inputs + self.bias[slicing])

self.potential[slicing] += change

self.output[slicing] = [f(x) for f,x in

zip(self.transfer[slicing], self.potential[slicing])]

def stabilize(self, max_steps=200, precision=None):

"""Run the network until it stabilizes.

A network is considered stable if the output does not change

from one timestep to the next. (Note that depending on the

transfer function, potentials can still change by this

definition)

If parameter max_steps is supplied, it is the maximum number of

timesteps to run, by default 200.

If parameter precision is supplied, it specifies the maximum

difference between the highest and lowest output for the network

to be considered stabilized. By default, full stabilizing

would apply, requiring IEE754 double precision substraction to

return 0.0

Return the number of time steps used to stabilize, or None

if the network did not stabilize within the maxiumum steps.

"""

for x in xrange(max_steps):

Make a copy that is not changed by calc_timestep

prev = list(self.output)

self.calc_timestep()

diff = numpy.subtract(prev, self.output)

if precision is None:

All must be 0

if not numpy.sometrue(diff):

self.log.info("Stabilized in %s timesteps", x)

return x

else:

The maximal difference must be less than precision

78 APPENDIX A. SOURCE CODE

span = numpy.absolute(diff).max()

if span <= precision:

return x

return None

A.2.1 Tests

Unit tests for the CTRNN library confirms basic functionality.

#!/usr/bin/env python2.4

- encoding: utf8

#

Copyright (c) 2006 Stian Soiland

#

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

#

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#

Author: Stian Soiland <stian@soiland.no>

URL: http://soiland.no/i/src/

License: MIT

#

"""Tests for ctrnn.py

"""

import unittest

A.2. CTRNN LIBRARY FOR PYTHON 79

import random

import ctrnn

import numpy

class TestTransfers(unittest.TestCase):

def testIdentity(self):

self.assertEqual(ctrnn.identity(1.5), 1.5)

self.assertEqual(ctrnn.identity(-0.9), -0.9)

self.assertEqual(ctrnn.identity(0.0), 0.0)

def testStep(self):

self.assertEqual(ctrnn.step(-0.3), 0.0)

self.assertEqual(ctrnn.step(0.2), 0.0)

self.assertEqual(ctrnn.step(0.4), 1.0)

self.assertEqual(ctrnn.step(0.8), 1.0)

self.assertEqual(ctrnn.step(1.8), 1.0)

def testSigmoid(self):

self.assertEqual(ctrnn.sigmoid(1000), 1.0)

self.assertEqual(ctrnn.sigmoid(-1000), 0.0) # Not OverflowError

self.assertEqual(ctrnn.sigmoid(0), 0.5)

self.assertEqual(ctrnn.sigmoid(0, gain=4), 0.5)

0.401312339887548

assert 0.401 < ctrnn.sigmoid(0, gain=4, bias=0.1) < 0.402

2.6503965530043108e-261

assert 0.0 < ctrnn.sigmoid(-600) < 2.66e-261

def testSignum(self):

self.assertEqual(ctrnn.signum(-0.3), -1.0)

self.assertEqual(ctrnn.signum(-4.3), -1.0)

self.assertEqual(ctrnn.signum(0.3), 1.0)

self.assertEqual(ctrnn.signum(2.3), 1.0)

self.assertEqual(ctrnn.signum(0.0), 1.0)

def testTanhPos(self):

assert 0.995 < ctrnn.tanh_pos(3) < 0.996

assert 0.761 < ctrnn.tanh_pos(1) < 0.762

assert 0.0099 < ctrnn.tanh_pos(0.01) < 0.01

self.assertEqual(ctrnn.tanh_pos(0), 0)

self.assertEqual(ctrnn.tanh_pos(-0.5), 0)

80 APPENDIX A. SOURCE CODE

class TestCTRNN(unittest.TestCase):

def testConstruction(self):

neurons = 5

net = ctrnn.CTRNN(neurons)

self.assertEqual(net.num_neurons, neurons)

self.assertEqual(len(net.potential), neurons)

self.assertEqual(len(net.bias), neurons)

self.assertEqual(len(net.timeconst), neurons)

self.assertEqual(len(net.transfer), neurons)

self.assertEqual(len(net.output), neurons)

self.assertEqual(net.weight.shape, (neurons, neurons))

self.assertEqual(list(net.potential), [0.0]*neurons)

self.assertEqual(list(net.output), [0.0]*neurons)

self.assertEqual(list(net.bias), [0.0]*neurons)

for row in net.weight:

self.assertEqual(list(row), [0.0]*neurons)

def testConstructionDefault(self):

neurons = 5

net = ctrnn.CTRNN(neurons)

Default timeconst should be 1.0

self.assertEqual(list(net.timeconst), [1.0]*neurons)

Default transfer should be sigmoid()

self.assertEqual(list(net.transfer), [ctrnn.sigmoid]*neurons)

def testConstructionParameters(self):

neurons = 5

timeconst = 1.5

transfer = ctrnn.step

net = ctrnn.CTRNN(neurons, timeconst, transfer=transfer)

self.assertEqual(list(net.timeconst), [timeconst]*neurons)

self.assertEqual(list(net.transfer), [transfer]*neurons)

def testConstructionTooLowTimeconst(self):

neurons = 5

invalid_timeconst = 0.499

valid_timeconst = 0.501

self.assertRaises(AssertionError, ctrnn.CTRNN, neurons,

invalid_timeconst)

ctrnn.CTRNN(neurons, valid_timeconst)

def testConnectAll(self):

A.2. CTRNN LIBRARY FOR PYTHON 81

neurons = 3

net = ctrnn.CTRNN(neurons)

Should not be allowed to call with too few or too many

parameters

self.assertRaises(AssertionError, net.connect_all)

self.assertRaises(AssertionError, net.connect_all, 1.5, random.random)

weight = 0.5

All rows should be equal to weight if ref_self

net.connect_all(weight, ref_self=True)

for row in net.weight:

self.assertEqual(list(row), [weight]*neurons)

All except the x==y cells should now be equal

net.connect_all(weight)

for x,row in enumerate(net.weight):

for y,w in enumerate(row):

if x == y:

self.assertEqual(w, 0.0)

else:

self.assertEqual(w, weight)

And test by random()

net.connect_all(func=random.random, ref_self=True)

unique = set()

for row in net.weight:

for w in row:

All should be unique

assert w not in unique

unique.add(w)

def testSetTransfer(self):

neurons = 5

net = ctrnn.CTRNN(neurons)

Default is sigmoid

matches = net.transfer == [ctrnn.sigmoid]*neurons

self.assert_(matches.all())

net.set_transfer(ctrnn.identity)

matches = net.transfer == [ctrnn.identity]*neurons

self.assert_(matches.all())

class TestCalcTimestep(unittest.TestCase):

82 APPENDIX A. SOURCE CODE

def setUp(self):

self.neurons = 3

self.net = ctrnn.CTRNN(self.neurons)

def testNeutral(self):

self.assertEqual(list(self.net.output), [0.0]*self.neurons)

self.net.calc_timestep()

self.assertEqual(list(self.net.output), [0.5]*self.neurons)

self.assertEqual(list(self.net.potential), [0.0]*self.neurons)

def testBias(self):

self.net.bias[0] = 1.0

self.net.calc_timestep()

self.assertEqual(list(self.net.potential), [1.0, 0.0, 0.0])

#0.7310585786300049

output0 = self.net.output[0]

assert 0.730 < output0 < 0.732

self.assertEqual(self.net.output[1], 0.5)

self.assertEqual(self.net.output[2], 0.5)

self.net.calc_timestep()

Should not change (timeconst=1)

self.assertEqual(output0, self.net.output[0])

def testTimeconst(self):

self.net.bias[0] = 1.0

self.net.calc_timestep()

output0 = self.net.output[0]

self.net.timeconst[0] = 1.5

self.net.calc_timestep()

Should not change as we have reached the bias

self.assertEqual(output0, self.net.output[0])

self.net.bias[0] = 0.0

should now drop gradually towards 0.5

self.net.calc_timestep()

0.58257020646231472

assert 0.582 < self.net.output[0] < 0.583

self.net.calc_timestep()

0.527749235055

assert 0.527 < self.net.output[0] < 0.528

def testWeights(self):

self.net.bias[0] = 1.0

from 0 to 1

A.2. CTRNN LIBRARY FOR PYTHON 83

self.net.weight[0,1] = 1.0

self.net.calc_timestep()

Does not reach it on this timestep

self.assertEqual(self.net.potential[1], 0.0)

self.assertEqual(self.net.output[1], 0.5)

self.net.calc_timestep()

Should be the only input, and therefore set the potential

self.assertEqual(self.net.potential[1], self.net.output[0])

0.67503752737682365

assert 0.675 < self.net.output[1] < 0.676

def testSlice(self):

self.net.bias[0] = 1.0

self.net.bias[2] = 1.0

self.net.calc_timestep(slice(0,1)) # ie. only 0

Updated

self.assertEqual(self.net.potential[0], 1.0)

0.7310585786300049

assert 0.730 < self.net.output[0] < 0.732

Unchanged

self.assertEqual(self.net.potential[1], 0.0)

self.assertEqual(self.net.potential[2], 0.0)

self.assertEqual(self.net.output[1], 0.0)

self.assertEqual(self.net.output[2], 0.0)

Update it all

self.net.calc_timestep()

self.assertEqual(self.net.output[1], 0.5)

assert 0.730 < self.net.output[0] < 0.732

self.net.weight[1,0] = 1.0

self.net.calc_timestep(slice(0,1)) # ie. only 0

Now, even though we only updated neuron 0, he should

include the input from the previous calculation of 1.

#0.817574476194

assert 0.817 < self.net.output[0] < 0.818

class TestStabilize(unittest.TestCase):

def setUp(self):

self.neurons = 3

self.net = ctrnn.CTRNN(self.neurons)

def testWeights(self):

Should be stable in 1 step with no connections

84 APPENDIX A. SOURCE CODE

self.assertEqual(self.net.stabilize(), 1)

self.net.weight[0,1] = 1.0

self.net.weight[1,2] = 1.0

Should be stable in 2 steps to propagate

0->1 and 1->2

self.assertEqual(self.net.stabilize(), 2)

Let’s introduce some fun

self.net.weight[2,0] = 1.0

steps = self.net.stabilize()

Should be about 24

assert 10 < steps < 100

And now, let’s also check that it IS stable

output = list(self.net.output)

self.net.calc_timestep()

output_2 = list(self.net.output)

self.assertEqual(output, output_2)

And actually, all values should be the same since our weights

are the same

self.assertEqual(output[0], output[1])

self.assertEqual(output[1], output[2])

def testTimeConstant(self):

self.net.bias[0] = 1.0

self.net.timeconst[0] = 1.5

steps = self.net.stabilize()

Should be about 33

assert 10 < steps < 100

Almost almost almost 1.0

assert 0.99999 < self.net.potential[0] < 1.00001

def testMaxSteps(self):

self.net.bias[0] = 1.0

NOTE: Illegal timeconstant < 0.5 -> unstable network

self.net.timeconst[0] = 0.4

steps = self.net.stabilize()

self.assertEqual(steps, None)

self.net.timeconst[0] = 0.95 # stable again, in about 40 steps

steps = self.net.stabilize(max_steps=5) # but 5 is not enough

self.assertEqual(steps, None)

steps = self.net.stabilize()

about 35

assert 2 < steps < 100

A.2. CTRNN LIBRARY FOR PYTHON 85

def testPrecision(self):

precision = 0.01

self.net.bias[0] = 1.0

self.net.timeconst[0] = 0.6

#steps = self.net.stabilize(precision=precision)

steps = self.net.stabilize(precision=precision)

Would take about 88 steps with precision=None

assert 7 < steps < 11

And check that we actually are within precision

prev = self.net.output

self.net.calc_timestep()

now = self.net.output

diff = now - prev

assert numpy.absolute(diff).max() < precision

class TestLayers(unittest.TestCase):

def testAdd(self):

layers = ctrnn.Layers()

hid_neurons = 5

out_neurons = 2

layers.add_layer("hidden", hid_neurons)

layers.add_layer("output", out_neurons)

self.assertEqual(layers.neurons, hid_neurons+out_neurons)

def testAddInput(self):

layers = ctrnn.Layers()

in_neurons = 4

layers.add_input_layer("input", in_neurons)

self.assertEqual(layers.neurons, in_neurons)

assert "input" in layers.input_layers

def testBuild(self):

hid_neurons = 5

out_neurons = 2

in_neurons = 4

neurons = hid_neurons+out_neurons+in_neurons

layers = ctrnn.Layers()

layers.add_input_layer("input", in_neurons)

layers.add_layer("hidden", hid_neurons)

86 APPENDIX A. SOURCE CODE

layers.add_layer("output", out_neurons)

Name already in use

self.assertRaises(Exception, layers.add_layer, "hidden",

hid_neurons)

self.assertEqual(layers.neurons, neurons)

layers.build_net()

self.assertEqual(layers.net.num_neurons, neurons)

assert isinstance(layers.input, ctrnn._Layer)

assert isinstance(layers.hidden, ctrnn._Layer)

assert isinstance(layers.output, ctrnn._Layer)

assert isinstance(layers.input, ctrnn._InputLayer)

assert not isinstance(layers.hidden, ctrnn._InputLayer)

assert not isinstance(layers.output, ctrnn._InputLayer)

Make sure they are separate

layers.input.bias[:] = [0,1,2,3]

layers.hidden.bias[:] = [4,5,6,7,8]

layers.output.bias[:] = [9,10]

self.assertEqual(list(layers.input.bias), [0,1,2,3])

self.assertEqual(list(layers.hidden.bias), [4,5,6,7,8])

self.assertEqual(list(layers.output.bias), [9,10])

And that they are added in order, and that changes to layers

are reflected back in the actual net

self.assertEqual(list(layers.net.bias), range(11))

class TestLayer(unittest.TestCase):

def setUp(self):

self.in_neurons = 4

self.hid_neurons = 5

self.out_neurons = 2

self.layers = ctrnn.Layers()

self.layers.add_input_layer("input", self.in_neurons)

self.layers.add_layer("hidden", self.hid_neurons)

self.layers.add_layer("output", self.out_neurons)

self.layers.build_net()

def testLength(self):

hidden = self.layers.hidden

self.assertEqual(len(hidden), self.hid_neurons)

def testGetItem(self):

hidden = self.layers.hidden

self.assertEqual(hidden[0], self.in_neurons)

A.2. CTRNN LIBRARY FOR PYTHON 87

self.assertEqual(hidden[-1], self.in_neurons+self.hid_neurons-1)

Check that boundaries are enforced (This would be valid

indexes because they would cross into "input" or "output", but

are not supposed to be returned from the "hidden" layer.

self.assertRaises(IndexError, lambda: hidden[self.hid_neurons])

self.assertRaises(IndexError, lambda: hidden[-self.hid_neurons-1])

self.assertEqual(self.layers.input[-1]+1, hidden[0])

self.assertEqual(hidden[-1], self.layers.output[0] - 1)

def testProperties(self):

Set weird values before and after hidden

self.layers.input.bias[:] = [4.0]*self.in_neurons

self.layers.output.bias[:] = [7.0]*self.out_neurons

hidden = self.layers.hidden

self.assertEqual(list(hidden.bias), [0.0]*self.hid_neurons)

self.assertEqual(list(hidden.potential), [0.0]*self.hid_neurons)

self.assertEqual(list(hidden.output), [0.0]*self.hid_neurons)

self.assertEqual(list(hidden.timeconst), [1.0]*self.hid_neurons)

self.assertEqual(list(hidden.transfer), [ctrnn.sigmoid]*self.hid_neurons)

def testSetTransfer(self):

hidden = self.layers.hidden

neurons = len(hidden)

Default is sigmoid

matches = hidden.transfer == [ctrnn.sigmoid]*neurons

self.assert_(matches.all())

hidden.set_transfer(ctrnn.signum)

matches = hidden.transfer == [ctrnn.signum]*neurons

self.assert_(matches.all())

And that the other are untouched

(Note how the input layer has identity by default)

self.assertEqual(list(self.layers.input.transfer),

[ctrnn.identity]*self.in_neurons)

self.assertEqual(list(self.layers.output.transfer),

[ctrnn.sigmoid]*self.out_neurons)

def testTimestep(self):

hidden = self.layers.hidden

hidden.calc_timestep()

self.assertEqual(list(hidden.output), [0.5]*self.hid_neurons)

self.assertEqual(list(hidden.potential), [0.0]*self.hid_neurons)

88 APPENDIX A. SOURCE CODE

hidden.bias[:] = [1.0] * self.hid_neurons

hidden.calc_timestep()

self.assertEqual(list(hidden.potential), [1.0]*self.hid_neurons)

Make sure nothing else changed

self.assertEqual(list(self.layers.input.bias), [0.0]*self.in_neurons)

self.assertEqual(list(self.layers.input.potential), [0.0]*self.in_neurons)

self.assertEqual(list(self.layers.input.output), [0.0]*self.in_neurons)

self.assertEqual(list(self.layers.output.bias), [0.0]*self.out_neurons)

self.assertEqual(list(self.layers.output.potential), [0.0]*self.out_neurons

)

self.assertEqual(list(self.layers.output.output), [0.0]*self.out_neurons)

def testInput(self):

input = self.layers.input

values = [-0.5, -0.1, 0.1, 0.5]

input.set_inputs(values)

self.assertEqual(list(input.bias), values)

self.assertEqual(list(input.potential), values)

self.assertEqual(list(input.output), values)

self.assertEqual(list(input.transfer),

[ctrnn.identity]*self.in_neurons)

if __name__ == "__main__":

unittest.main()

A.3. BERNS AND SEJNOWSKI USING CTRNN 89

A.3 Berns and Sejnowski using CTRNN

Reimplementation of the Berns and Sejnowski (1998) model using the CTRNN library

described in section A.2 on page 68. Compared to the implementation A.1 on page 60,

this implementation does not use the sigmoidal update rule, but applies leaky integrators

as used in the CTRNN literature.

#!/usr/bin/env python2.4

- encoding: utf8

#

Copyright (c) 2006 Stian Soiland

#

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

#

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#

Author: Stian Soiland <stian@soiland.no>

URL: http://soiland.no/i/src/

License: MIT

#

"""CTRNN basal ganglia, approaching Berns & Sejnowski 1998.

"""

import logging

import itertools

import ctrnn

90 APPENDIX A. SOURCE CODE

def sigmoid_bias(x):

"""Sigmoid with gain and bias set according to Berns1998."""

return ctrnn.sigmoid(x, gain=4, bias=0.0)

DEBUG=1

STATS=1

class Berns:

def __init__(self):

Logger

self.log = logging.getLogger("berns")

if not self.log.handlers or logging.root.handlers:

logging.basicConfig()

constants and initial weights/values

self.seq = [0,1,2,3,1,4]

self.inputs = max(self.seq)+1

self.neurons = self.inputs * 4 # str, gp, stn_l, stn_s

self.trainsteps = 300 # timesteps to train

self.hintsteps = 1 # timesteps to hint in testing

self.trialsteps = 30 # timesteps for trial

self.long = 4 # 20 msec

self.short = 0.7 # 7 msec

self.effect = 10

self.w_learning = 0.5

self.v_learning = 0.1

self.v = [0.0 for x in range(self.inputs)]

By default, timeconst=1 (no ctrnn) and no weights

self.net = ctrnn.CTRNN(self.neurons)

self.net.transfer[:] = [sigmoid_bias for x in range(self.inputs)]

for n in range(self.inputs):

1-1 mappings

self.net.weight[self.str(n), self.gp(n)] = -100.0 # inhib

self.net.weight[self.gp(n), self.stn_l(n)] = self.effect

self.net.weight[self.gp(n), self.stn_s(n)] = self.effect

for m in range(self.inputs):

And STNs connect to all GPs

self.net.weight[self.stn_l(n), self.gp(m)] = 0.0

self.net.weight[self.stn_s(n), self.gp(m)] = 0.0

Only STN has timeconsts != 1

self.net.timeconst[self.stn_l(n)] = self.long

A.3. BERNS AND SEJNOWSKI USING CTRNN 91

self.net.timeconst[self.stn_s(n)] = self.short

#self.net.bias[self.stn_l(n)] = -0.9

self.set_input()

self.net.stabilize()

def str(self, n):

return n

def gp(self, n):

return n + self.inputs

def stn_l(self, n):

return n + self.inputs*2

def stn_s(self, n):

return n + self.inputs*3

def set_input(self, input=-1):

input is 0 or 1

for n in range(self.inputs):

self.net.bias[self.str(n)] = (n == input) and 1000 or -1000

Update only those neurons

self.net.calc_timestep(slice(self.str(0), self.str(self.inputs)))

self.log.debug("set_input(%s) %s", input, [self.net.output[self.str(n)] for

n in range(self.inputs)])

def get_output(self):

return [self.net.output[self.gp(n)] for n in range(self.inputs)]

def winner(self):

output = self.get_output()

return output.index(min(output))

def calc_error(self):

sum = 0.0

for n in range(self.inputs):

sum += (1-self.net.output[self.gp(n)])

sum -= self.v[n] * self.net.output[self.str(n)]

self.error = sum

def calc_v_change(self, i):

return self.v_learning * self.error * self.net.output[self.str(i)]

92 APPENDIX A. SOURCE CODE

def calc_w_change(self, i, stn):

Calculates the change between input i and STN unit stn

r = (self.w_learning * (self.error * self.net.output[self.gp(i)] -

self.net.output[self.str(i)]) *

self.net.output[stn])

return r

def calc_STN(self):

neurons = slice(self.stn_l(0), self.stn_l(self.inputs))

self.net.calc_timestep(neurons)

neurons = slice(self.stn_s(0), self.stn_s(self.inputs))

self.net.calc_timestep(neurons)

def calc_GP(self):

neurons = slice(self.gp(0), self.gp(self.inputs))

self.net.calc_timestep(neurons)

def step(self, input=None):

if input is not None:

self.set_input(input)

Calculated from previous GP values

self.calc_STN()

Calculated from new STNs, and new STRs

self.calc_GP()

Compares new GPs with new STRs

self.calc_error()

Update weights

for n in range(self.inputs):

gp = self.gp(n)

for m in range(self.inputs):

stn_l = self.stn_l(m)

stn_s = self.stn_s(m)

self.net.weight[stn_l, gp] += self.calc_w_change(n, stn_l)

self.net.weight[stn_s, gp] += self.calc_w_change(n, stn_s)

self.v[n] += self.calc_v_change(n)

FIXME: Add weight constraints

self.log_stats()

def train(self):

for x in range(self.trainsteps/len(self.seq)):

for number in self.seq:

A.3. BERNS AND SEJNOWSKI USING CTRNN 93

self.step(number)

guess = self.winner()

self.log.info("Train h=%s g=%s %s", number, guess, self.get_output()

)

def reset(self):

self.net.potential[:] = [0] * self.neurons

def log_stats(self):

if not STATS:

return

if not hasattr(self, "_f"):

self._f = dict()

for out in ("str", "gp", "stn_l_p", "stn_l", "stn_s", "e", "f", "v", "

w_stn_l", "w_stn_s"):

self._f[out] = open("%s.txt" % out, "w")

layers = ("str", "gp", "stn_l", "stn_s")

for n in range(self.inputs):

for layer in layers:

mapper = getattr(self, layer)

self._f[layer].write("%s " % self.net.output[mapper(n)])

self._f["stn_l_p"].write("%s " % self.net.potential[self.stn_l(n)])

self._f["stn_l_p"].write("\n")

finished all log-lines

for layer in layers:

self._f[layer].write("\n")

print >>self._f["e"], self.error

print >>self._f["v"], " ".join(map(str, self.v))

And the GP weights

for n in range(self.inputs):

gp = self.gp(n)

for m in range(self.inputs):

stn_s = self.stn_s(m)

self._f["w_stn_s"].write("%s " % self.net.weight[stn_s][gp])

for m in range(self.inputs):

stn_l = self.stn_l(m)

self._f["w_stn_l"].write("%s " % self.net.weight[stn_l][gp])

self._f["w_stn_s"].write("\n")

self._f["w_stn_l"].write("\n")

94 APPENDIX A. SOURCE CODE

def test(self):

self.reset()

seq = itertools.cycle(self.seq)

for hint in itertools.islice(seq, self.hintsteps):

self.step(hint)

guess = self.winner()

self.log.info("Hint h=%s g=%s %s e=%s", hint, guess,

self.get_output(), self.error)

Set no input

self.set_input(-1)

correct = 0

answers = []

for answer in itertools.islice(seq, self.trialsteps):

self.step()

guess = self.winner()

answers.append(guess)

self.log.info("Test a=%s g=%s %s e=%s", answer, guess,

self.get_output(), self.error)

correct += guess==answer

return correct, answers

if __name__ == "__main__":

logging.getLogger().setLevel(logging.INFO)

berns = Berns()

berns.train()

berns.log

berns.test()

A.4. PRESCOTT (2006) USING CTRNN 95

A.4 Prescott (2006) using CTRNN

Implementation of Prescott et al. (2006) using the CTRNN library. The network is

run to stabilization for each sequence of the input, as described in the original work.

The method salience tests the salience by gradually increasing the salient input s2 to

compete with the salient input s1.

#!/usr/bin/env python2.4

- encoding: utf8

#

Copyright (c) 2006 Stian Soiland

#

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

#

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#

Author: Stian Soiland <stian@soiland.no>

URL: http://soiland.no/i/src/

License: MIT

#

"""CTRNN basal ganglia, as of Prescott 2006

"""

import logging

import itertools

import Numeric

import ctrnn

from isplit import isplit

96 APPENDIX A. SOURCE CODE

from sets import Set

import operator

import sys

DEBUG=1

STATS=1

def piecewise(a, theta=0.0):

"""Piecewise lineaer transfer as by Prescott et al. 2006"""

NOTE: Assumes we really want bounded between 0..1 and fixes

a serious bug in the original equation

return min(1.0, max(0.0, a-theta))

class Prescott(ctrnn.Layers):

def __init__(self):

Logger

self.log = logging.getLogger("prescott")

if not self.log.handlers or logging.root.handlers:

logging.basicConfig()

constants and initial weights/values

self.seq = [0,1,2,3,1,4]

self.inputs = max(self.seq)+1

self.trainsteps = 20 # timesteps to train

self.hintsteps = 1 # timesteps to hint in testing

self.trialsteps = 0 # timesteps for trial

self.striatum_delta = 0.2

self.timeconst = 3.3333

"The model was considered to have converged

whenever the smallest delta a on two consecutive

timesteps was less than 0.0001"

(We’ll assume Prescott meant the LARGEST delta)

self.stable_limit = 0.0001

self.w = {

Unless otherwise noted, connections are 1-1 by channel

(’ssc’, ’d1’): (1+self.striatum_delta)*0.5,

(’ssc’, ’d2’): (1-self.striatum_delta)*0.5,

(’ssc’, ’mc’): 1,

(’ssc’, ’stn’): 0.5,

(’mc’, ’d1’): (1+self.striatum_delta)*0.5,

(’mc’, ’d2’): (1-self.striatum_delta)*0.5,

(’mc’, ’vl’): 1,

(’mc’, ’trn’): 1,

A.4. PRESCOTT (2006) USING CTRNN 97

(’mc’, ’stn’): 0.5,

(’d1’, ’snr’): -1,

(’d2’, ’gp’): -1,

(’stn*’, ’snr’): 0.9, # all-to-all

(’stn*’, ’gp’): 0.9, # all-to-all

(’gp’, ’stn’): -1,

(’gp’, ’snr’): -0.3,

(’snr’, ’trn’): -0.2,

(’snr’, ’vl’): -1,

(’trn’, ’vl’): -0.125,

(’trn*’, ’vl’): -0.4, # all-to-all

(’vl’, ’mc’): 1,

(’vl’, ’trn’): 1,

}

Build layers

ctrnn.Layers.__init__(self)

layers = reduce(Set.union, map(Set, isplit(self.w)))

for layer in layers:

if "*" in layer: continue

if layer == "ssc":

self.add_input_layer(layer, self.inputs)

else:

self.add_layer(layer, self.inputs)

self.build_net(timeconst=self.timeconst)

self.net.set_transfer(piecewise)

Otherwise ssc will also have piecewise

self.ssc.fix()

for n in range(self.inputs):

for ((src_l,dest_l), weight) in self.w.items():

dest = getattr(self, dest_l)[n]

if src_l[-1] == "*":

All of them are inputs

for m in range(self.inputs):

src = getattr(self, src_l.rstrip("*"))[m]

self.net.weight[src, dest] = weight

else:

src = getattr(self, src_l)[n]

self.net.weight[src, dest] = weight

Just make sure this weight is set after trn* -> vl

self.vl.weight[self.trn[n], n] = self.w["trn", "vl"]

And the biases

self.d1.bias[n] = -0.2

98 APPENDIX A. SOURCE CODE

self.d2.bias[n] = -0.2

self.stn.bias[n] = 0.25

self.gp.bias[n] = 0.2

self.snr.bias[n] = 0.2

self.set_input()

self.net.stabilize()

def set_input(self, input=-1):

input is 0 or 1, depending on the selected channel

inputs = [n == input for n in range(self.inputs)]

self.ssc.set_inputs(inputs)

def get_output(self, timestep=False):

if timestep:

self.net.calc_timestep()

return self.gp.output

def winner(self):

output = self.get_output()

return list(output).index(min(output))

def step(self, input=None):

if input is not None:

self.set_input(input)

self.net.stabilize(precision=self.stable_limit)

self.log_stats()

def train(self):

for x in range(self.trainsteps/len(self.seq)):

for number in self.seq:

self.step(number)

for x in range(8):

self.step()

guess = self.winner()

self.log.info("Train h=%s g=%s %s", number, guess, self.get_output()

)

def reset(self):

self.net.potential[:] = [0.0] * self.neurons

def test(self):

self.reset()

A.4. PRESCOTT (2006) USING CTRNN 99

seq = itertools.cycle(self.seq)

for hint in itertools.islice(seq, self.hintsteps):

self.step(hint)

for x in range(8):

self.step()

guess = self.winner()

self.log.info("Hint h=%s g=%s %s", hint, guess,

self.get_output())

Set no input

self.set_input(-1)

correct = 0

answers = []

for answer in itertools.islice(seq, self.trialsteps):

self.step()

for x in range(8):

self.step()

guess = self.winner()

answers.append(guess)

self.log.info("Test a=%s g=%s %s", answer, guess,

self.get_output())

correct += guess==answer

return correct, answers

def log_stats(self):

if not STATS:

return

if not hasattr(self, "_f"):

Open files for writing

self._f = dict()

for out,_ in self.layers:

Outputs

self._f[out] = open("%s.txt" % out, "w")

Weights

out = "w_" + out

self._f[out] = open("%s.txt" % out, "w")

Log the stats

for name,_ in self.layers:

outputs

out = self._f[name]

layer = getattr(self, name)

out.write(" ".join(map(str, layer.output)))

100 APPENDIX A. SOURCE CODE

out.write("\n")

weights

out = self._f["w_" + name]

for n in xrange(len(layer)):

out.write(" ".join(map(str, layer.weight[:,n])))

out.write(" ")

out.write("\n")

#print >>self._f["E"], self.error

def salience(self):

"""Test salience space"""

for s1 in xrange(100):

s1 /= 100.0

self.net.output[:] = [0.0]*len(self.net.output)

for s2 in xrange(100):

s2 /= 100.0

inputs = [s1, s2, 0.0, 0.0, 0.0]

self.ssc.set_inputs(inputs)

self.step()

sys.stdout.write(".")

sys.stdout.flush()

sys.stdout.write("\n")

sys.stdout.flush()

if __name__ == "__main__":

logging.getLogger().setLevel(logging.INFO)

prescott = Prescott()

#prescott.train()

#prescott.test()

prescott.salience()

Glossary

actor-critic

An architecture similar to control systems. The actor selects the action to perform

on the environment, while the critic provides the actor with a reinforcement signal

by judging the effect of the actions. 4

anterior

in the front, opposite of posterior 12

closed-loop

A system where its output will influence the system’s input. Examples are feedback

controllers, animals and robots, because they all interact with their environment

and thereby change their own (sensory) inputs. 4

CS: conditioned stimulus

sensory cue that preceeds the reward (US) 6, 12, 13, 54

CTRNN: continuous-time recurrent neural network

artificial neural network using continuous time and recurrent connections, as op-

posed to discrete time feed-forward networks vii, viii, 3, 14–16, 23, 43, 46–49, 55,

59, 68, 78, 89

GP: globus pallidus

relays information from the striatum to the thalamus. 7, 12, 19, 21–27, 33–44, 51,

53–55, 60

GPe: globus pallidus external

part of the indirect pathway 7, 9, 10, 23

101

102 Glossary

GPi: globus pallidus internal

part of the output zone of the basal ganglia, projects to the motor cortex through

the thalamus 7, 9–11, 18, 23, 26, 55

in vivo

taking place in a living organism 21, 53, 54

inferior

lower, opposite of superior 12

interior

inside, opposite of exterior 12

lateral

on the side, opposite of medial 12

motor cortex

The region of the cerebral cortex concerned with motor behaviour 9

nuclei

plural of nucleus, collection of nerve cells in the brain that are anatomically dis-

crete, and which typically serve a particular function. 7

open-loop

A system where the input is not influenced by the system output. Opposite of

closed-loop. 4

premotor cortex

Motor association areas in the frontal lobe anterior to primary motor cortex,

thought to be involved in planning or programming of voluntary movements 9

SN: substantia nigra

composed of substantia nigra pars reticulata and substantia nigra pars compacta

7, 9

Glossary 103

SNc: substantia nigra pars compacta

a densely packed part of the substantia nigra 7, 21–23, 25, 54, 55, 60

SNr: substantia nigra pars reticulata

part of the output zone of the basal ganglia, projects mainly to eye movement

controls. 7, 10, 18, 23

STN: subthalamic nucleus

part of the indirect pathway 7, 9, 10, 12, 21–26, 35–40, 43, 45, 51, 54, 55, 60

STR: striatum

the inputs to the basal ganglia 7, 9, 10, 19, 21, 22, 25, 26, 33, 35–41, 43, 44, 54, 55

superior

upper or outside, opposite of inferior 9

superior colliculus

part of the roof of the midbrain, plays an important role in orienting movements

of the head and eyes 9

TD: temporal difference

a delayed reinforcement learning method based on the temporal differences in pre-

dictions 4–7, 16–18, 20

tonically active neuron

a neuron who always fires unless inhibited by dendrite signals. This can be com-

pared to an artifical neuron having a positive bias. 11

US: unconditioned stimulus

follows the CS, usually the actual reward 6

VA/VL complex

The ventral anterior and ventral lateral nuclei of the thalamus that relay signals

to the premotor and motor cortex. 9

ventral

on the underside, opposite of dorsal 12

104 Glossary

Bibliography

ISO/IEC 14882:2003: Programming languages: C++. 2003. URL http://www.iso.

org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110.

I. Bar-Gad, G. Morris, and H. Bergman. Information processing, dimension-

ality reduction and reinforcement learning in the basal ganglia. Progress in

Neurobiology, 71(6):439–473, December 2003. doi: 10.1016/j.pneurobio.2003.12.

001. URL http://www.sciencedirect.com/science/article/B6T0R-4BH62K9-1/

2/bee825f6b204eaf551839d08ab16732d.

A. G. Barto. Adaptive critics and the basal ganglia. In J. C. Houk,

J. L. Davis, and D. G. Beiser, editors, Models of Information Process-

ing in the Basal Ganglia, pages 215–232. MIT Press, Cambridge, MA,

1995. URL http://mitpress.mit.edu/catalog/item/default.asp?sid=

01D398C6-F7C5-47FD-A518-E241F26DF9EA\&ttype=2\&tid=8362.

R. D. Beer. On the dynamics of small continuous-time recurrent neural networks. Adap-

tive Behavior, 3(4):469–509, 1995. ISSN 1059-7123. URL http://portal.acm.org/

citation.cfm?id=218539.

D. G. Beiser and J. C. Houk. Model of cortical-basal ganglionic processing: En-

coding the serial order of sensory events. Journal of Neurophysiology, 79(6):3168–

3188, June 1998. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=

Retrieve\&db=pubmed\&dopt=Abstract\&list_uids=9636117.

G. S. Berns and T. J. Sejnowski. How the basal ganglia make decisions. In A. Damasio,

H. Damasio, and Y. Christen, editors, The Neurobiology of Decision Making, pages

101–113. Springer-Verlag, 1996.

G. S. Berns and T. J. Sejnowski. A computational model of how the basal gan-

glia produce sequences. Journal of Cognitive Neuroscience, 10(1):108–121, January

105

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.sciencedirect.com/science/article/B6T0R-4BH62K9-1/2/bee825f6b204eaf551839d08ab16732d
http://www.sciencedirect.com/science/article/B6T0R-4BH62K9-1/2/bee825f6b204eaf551839d08ab16732d
http://mitpress.mit.edu/catalog/item/default.asp?sid=01D398C6-F7C5-47FD-A518-E241F26DF9EA&ttype=2&tid=8362
http://mitpress.mit.edu/catalog/item/default.asp?sid=01D398C6-F7C5-47FD-A518-E241F26DF9EA&ttype=2&tid=8362
http://portal.acm.org/citation.cfm?id=218539
http://portal.acm.org/citation.cfm?id=218539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9636117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9636117

106 BIBLIOGRAPHY

1998. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\

&db=pubmed\&dopt=Abstract\&list_uids=9526086.

J. Blynel and D. Floreano. Levels of dynamics and adaptive behavior in evolutionary

neural controllers. In ICSAB: Proceedings of the seventh international conference on

simulation of adaptive behavior on From animals to animats, pages 272–281, Cam-

bridge, MA, USA, 2002. MIT Press.

J. Brown, D. Bullock, and S. Grossberg. How the basal ganglia use parallel excita-

tory and inhibitory learning pathways to selectively respond to unexpected reward-

ing cues, December 1999. URL http://citeseer.ist.psu.edu/231717.html;ftp:

//cns-ftp.bu.edu/pub/diana/BroBulGro99.ps.gz.

J. Carlsson and T. Ziemke. Yaks - yet another khepera simulator. In U. Rückert, J. Sitte,

and U. Witkowski, editors, Autonomous Minirobots for Research and Entertainment -

Proceedings of the 5th International Heinz Nixdorf Symposium, pages 235–241, Pader-

born, Germany, 2001. HNI-Verlagsschriftenreihe.

J. L. Contreras-Vidal and W. Schultz. A predictive reinforcement model of dopamine

neurons for learning approach behavior. Journal of Computational Neuroscience, 6

(3):191–214, 1999.

E. A. Di Paolo. Evolving spike-timing-dependent plasticity for single-trial learning in

robots. Philosophical Transactions: Mathematical, Physical and Engineering Sciences,

361(1811):2299–2319, October 2003. ISSN 1364-503X. doi: 10.1098/rsta.2003.1256.

URL http://dx.doi.org/10.1098/rsta.2003.1256.

K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales. Altivec extension to powerpc

accelerates media processing. IEEE Micro, 20(2):85–95, March 2000. ISSN 0272-1732.

doi: 10.1109/40.848475. URL http://dx.doi.org/10.1109/40.848475.

A. Gillies and G. Arbuthnott. Computational models of the basal gan-

glia. Movement Disorders, 15(5):762–770, September 2000. ISSN 0885-3185.

doi: 10.1002/1531-8257(200009)15:5〈762::AID-MDS1002〉3.0.CO;2-2. URL

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=pubmed\

&dopt=Abstract\&list_uids=11009178.

K. Gurney, T. J. Prescott, and P. Redgrave. A computational model of action selec-

tion in the basal ganglia. i. a new functional anatomy. Biological Cybernetics, 84(6):

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9526086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9526086
http://citeseer.ist.psu.edu/231717.html; ftp://cns-ftp.bu.edu/pub/diana/BroBulGro99.ps.gz
http://citeseer.ist.psu.edu/231717.html; ftp://cns-ftp.bu.edu/pub/diana/BroBulGro99.ps.gz
http://dx.doi.org/10.1098/rsta.2003.1256
http://dx.doi.org/10.1109/40.848475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11009178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11009178

BIBLIOGRAPHY 107

401–410, May 2001. doi: 10.1007/PL00007984. URL http://dx.doi.org/10.1007/

PL00007984.

K. Gurney, T. J. Prescott, J. R. Wickens, and P. Redgrave. Computational models of the

basal ganglia: from robots to membranes. Trends in Neurosciences, 27(8):453–459,

August 2004. doi: 10.1016/j.tins.2004.06.003. URL http://www.sciencedirect.

com/science/article/B6T0V-4CP6B64-1/2/f2737553e13eb034fe862e6b5033cd68.

K. N. Gurney, T. J. Prescott, and P. Redgrave. The basal ganglia viewed as an action

selection device. In Eighth International Conference on Artificial Neural Networks,

pages 1033–1038, Skövde, Sweden, September 1998. URL http://citeseer.ist.

psu.edu/context/1043794/0.

D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New

York, June 1949. ISBN 0805843000. URL http://www.amazon.fr/exec/obidos/

ASIN/0805843000/citeulike04-21.

M. Hines and N. T. Carnevale. Computer modeling methods for neurons. In M. A.

Arbib, editor, The handbook of brain theory and neural networks, pages 226–230. MIT

Press, Cambridge, MA, USA, 1998. ISBN 0262511029. URL http://portal.acm.

org/citation.cfm?id=303697.

J. C. Houk, J. L. Adams, and A. G. Barto. A model of how the basal ganglia generate

and use neural signals that predict reinforcement. In J. C. Houk, J. L. Davis, and

D. G. Beiser, editors, Models of Information Processing in the Basal Ganglia, pages

249–270. MIT Press, Cambridge, MA, 1995.

M. D. Humphries and K. N. Gurney. The role of intra-thalamic and thalamocortical

circuits in action selection. Network: Computation in Neural Systems, 13(1):131–156,

2002. URL http://stacks.iop.org/0954-898X/13/131.

G. Huntington. On chorea. The Medical and Surgival Reporter, 26(15):317–321, April

1872. URL http://www.neuro.psychiatryonline.org/cgi/content/full/15/1/

109.

D. Joel, Y. Niv, and E. Ruppin. Actor-critic models of the basal ganglia: new anatomical

and computational perspectives. Neural Netw., 15(4):535–547, June 2002. ISSN 0893-

6080. doi: 10.1016/S0893-6080(02)00047-3. URL http://dx.doi.org/10.1016/

S0893-6080(02)00047-3.

http://dx.doi.org/10.1007/PL00007984
http://dx.doi.org/10.1007/PL00007984
http://www.sciencedirect.com/science/article/B6T0V-4CP6B64-1/2/f2737553e13eb034fe862e6b5033cd68
http://www.sciencedirect.com/science/article/B6T0V-4CP6B64-1/2/f2737553e13eb034fe862e6b5033cd68
http://citeseer.ist.psu.edu/context/1043794/0
http://citeseer.ist.psu.edu/context/1043794/0
http://www.amazon.fr/exec/obidos/ASIN/0805843000/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0805843000/citeulike04-21
http://portal.acm.org/citation.cfm?id=303697
http://portal.acm.org/citation.cfm?id=303697
http://stacks.iop.org/0954-898X/13/131
http://www.neuro.psychiatryonline.org/cgi/content/full/15/1/109
http://www.neuro.psychiatryonline.org/cgi/content/full/15/1/109
http://dx.doi.org/10.1016/S0893-6080(02)00047-3
http://dx.doi.org/10.1016/S0893-6080(02)00047-3

108 BIBLIOGRAPHY

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey,

May 1996. URL http://arxiv.org/abs/cs.AI/9605103.

J. W. Mink. The basal ganglia: focused selection and inhibition of competing

motor programs. Prog Neurobiol, 50(4):381–425, November 1996. ISSN 0301-

0082. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\

&db=pubmed\&dopt=Abstract\&list_uids=97158072.

P. Montague, P. Dayan, and T. Sejnowski. A framework for mesencephalic dopamine

systems based on predictive hebbian learning. J. Neurosci., 16(5):1936–1947, March

1996. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\

&db=pubmed\&dopt=Abstract\&list_uids=8774460.

M. Murphy. Octave: A free, high-level language for mathematics. Linux Journal, 1997

(39es), July 1997. ISSN 1075-3583. URL http://portal.acm.org/citation.cfm?

id=326884.

T. Oliphant. Numerical python home page. URL http://numeric.scipy.org/.

J. Parkinson. An essay on the shaking palsy. Published as a mono-

graph, London, May 1817. doi: 10.1176/appi.neuropsych.14.2.223. URL

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=pubmed\

&dopt=Abstract\&list_uids=11983801.

I. P. Pavlov. Conditioned reflexes. Routledge & Kegan Paul, London, 1927. URL #.

T. J. Prescott, , K. Gurney, M. D. Humphries, and P. Redgrave. A robot model of

the basal ganglia: behavior and intrinsic processing. Neural Networks, 19(1):31–61,

January 2006. ISSN 0893-6080. doi: 10.1016/j.neunet.2005.06.049. URL http://dx.

doi.org/10.1016/j.neunet.2005.06.049.

D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. Lamantia, J. O. Mcnamara,

and M. S. Williams. Neuroscience. Sinauer Associates, Sunderland, Massachusetts,

USA, 2003.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of predic-

tion and reward. Science, 275(5306):1593–1599, March 1997. ISSN 0036-

8075. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\

&db=pubmed\&dopt=Abstract\&list_uids=9054347.

http://arxiv.org/abs/cs.AI/9605103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=97158072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=97158072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8774460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8774460
http://portal.acm.org/citation.cfm?id=326884
http://portal.acm.org/citation.cfm?id=326884
http://numeric.scipy.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11983801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11983801
#
http://dx.doi.org/10.1016/j.neunet.2005.06.049
http://dx.doi.org/10.1016/j.neunet.2005.06.049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9054347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9054347

BIBLIOGRAPHY 109

B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search.

In Proceedings of the national conference on Artificial intelligence, volume 12, pages

337+, Seattle, WA, July 1994. John Wiley & Sons Ltd.

A. Shankar. Annie - artifical neural network library. URL http://annie.sourceforge.

net/.

Y. Smith, M. D. Bevan, E. Shink, and J. P. Bolam. Microcircuitry of the direct and

indirect pathways of the basal ganglia. Neuroscience, 86(2):353–387, September 1998.

ISSN 0306-4522. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=

Retrieve\&db=pubmed\&dopt=Abstract\&list_uids=9881853.

E. Suri and W. Schultz. Internal model reproduces anticipatory neural activity,

1999. URL http://citeseer.ist.psu.edu/690846.html;http://www.cnl.salk.

edu/~suri/choice.pdf.

R. E. Suri and W. Schultz. Temporal difference model reproduces anticipatory neural

activity. Neural Computation, 13(4):841–862, 2001.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3(1):9–44, August 1988. ISSN 0885-6125. doi: 10.1023/A:1022633531479.

URL http://dx.doi.org/10.1023/A:1022633531479.

R. S. Sutton and A. G. Barto. Toward a modern theory of adaptive networks: expec-

tation and prediction. Psychological Review, 88(2):135–170, March 1981. ISSN 0033-

295X. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\

&db=pubmed\&dopt=Abstract\&list_uids=7291377.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction (Adaptive

Computation and Machine Learning). The MIT Press, March 1998. ISBN 0262193981.

URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20\&path=

ASIN/0262193981.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8(3-

4):257–277, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992697. URL http:

//dx.doi.org/10.1007/BF00992697.

G. van Rossum. Python Reference Manual, 2.4.2 edition, September 2005. URL http:

//docs.python.org/ref/ref.html.

http://annie.sourceforge.net/
http://annie.sourceforge.net/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9881853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9881853
http://citeseer.ist.psu.edu/690846.html; http://www.cnl.salk.edu/~suri/choice.pdf
http://citeseer.ist.psu.edu/690846.html; http://www.cnl.salk.edu/~suri/choice.pdf
http://dx.doi.org/10.1023/A:1022633531479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7291377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7291377
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0262193981
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0262193981
http://dx.doi.org/10.1007/BF00992697
http://dx.doi.org/10.1007/BF00992697
http://docs.python.org/ref/ref.html
http://docs.python.org/ref/ref.html

110 BIBLIOGRAPHY

F. Wörgötter and B. Porr. Temporal sequence learning, prediction, and control: a

review of different models and their relation to biological mechanisms. Neural Comput,

17(2):245–319, February 2005. ISSN 0899-7667. doi: 10.1162/0899766053011555.

URL http://www.ingentaconnect.com/content/mitpress/neco/2005/00000017/

00000002/art00001.

http://www.ingentaconnect.com/content/mitpress/neco/2005/00000017/00000002/art00001
http://www.ingentaconnect.com/content/mitpress/neco/2005/00000017/00000002/art00001

	Abstract
	Preface
	Introduction
	Background
	Motivation
	Outline of this work
	Theory
	Control theory
	Actor-Critic architecture
	Reinforcement learning
	Classical conditioning
	Temporal difference (TD) learning
	Basal ganglia
	Neurological description
	Psychological research

	Continuous time recurrent neural networks

	Problem definition and methods
	Modeling the basal ganglia
	Simulating basal ganglia in a robotic simulation
	Sequence learning
	Previous work
	Temporal difference models
	Berns and Sejnowski's model
	Prescott et al.

	Experiment details
	Implementation frameworks
	Implementing the model of Berns and Sejnowski
	Implementing the model of Prescott et al.
	Experimental Results
	Reproducing the model of Berns and Sejnowski
	Globus pallidus activity
	Weight learning
	Error values
	Reward
	Playback
	Refinements
	Noise
	Leaky integrators with sigmoidal updates

	Implementing a CTRNN

	Reproducing the model of Prescott et al.
	Transfer function
	Performing action selection

	Conclusion
	Summary
	Discussion
	Basal ganglia as a TD-learning actor-critic
	Reproducing Berns and Sejnowski
	Issues with reproducing experiments
	Future work
	Source code
	Berns and Sejnowski in Python
	CTRNN library for Python
	Tests

	Berns and Sejnowski using CTRNN
	Prescott (2006) using CTRNN

	Bibliography

